Анализ деятельности кредитных организаций

скачать (8034 kb.)

1   2   3   4

Раздел 2 Интеллектуальный анализ данных о закономерностях

функционирования объекта исследования



Цель анализа состоит в применении интеллектуального анализа данных для исследования заданной структуры данных для разработки принятия решений.

В данной работе основной задачей является выявление различий между регионами России на основе показателей деятельности кредитных организаций приведенным на 01.0.1.2007.

Исходные данные

Объектами в данной работе являются: Центральный, Северо-Западный, Южный, Приволжский, Уральский, Сибирский, Дальневосточный федеральный округа.

В качестве признаков в данной работе выступают: объем выданных кредитов физическим лицам, объем кредитов физическим лицам на покупку жилья, средневзвешенный срок кредитования, средневзвешенная процентная ставка, объем ипотечных жилищных кредитов физическим лицам, средневзвешенный срок кредитования (по ипотечным кредитам), средневзвешенная процентная ставка (по ипотечным кредитам).

2.1 Анализ методом главных компонент



Метод главных компонент является методом визуализации данных.

Методы визуализации данных нацелены на поиск наиболее выразительных изображений совокупности исследуемых объектов для последующего максимального использования потенциала зрительного анализатора экспериментатора.

Визуализация данных предполагает получение тем или иным способом графического отображения совокупности объектов в новое координатное пространство, в качестве которого могут быть использованы либо числовая ось, либо плоскость, либо трехмерное пространство, максимально отражающие особенности распределения этих объектов в многомерном пространстве.

В соответствии с количеством измерений в новом координатном пространстве могут быть следующие способы визуального представления:

С геометрических позиций алгоритм построения главных компонент (ГК) состоит в следующем.

Производится центрирование исходных данных (рис.1а), начало координат переносится в центр распределения данных (центроид), являющимся центром эллипсоида рассеивания случайного вектора Х (рис.1б).



Рис. 2. Формирование главных компонент
Затем осуществляется формирование главных компонент F1, F2,…,Fp (рис.1в). Линейные комбинации выбираются таким образом, что среди всех возможных комбинаций первая главная компонента F1(X) обладает наибольшей дисперсией. Дисперсия ? стремится к максимуму: F1(X)=I=max ? ->?pi. Графически это выглядит как ориентация новой координатной оси F1 вдоль направления наибольшей вытянутости эллипсоида рассеивания объектов в исходном пространстве P признаков. а разбросом вдоль нескольких последних осей можно пренебречь.

Вторая главная компонента F2(X) перпендикулярна первой и строится исходя из предположений нахождения максимальной дисперсии среди всех оставшихся линейных комбинаций, некоррелированных с первой ГК.

Остальные главные компоненты определяются аналогичным способом.

Количество главных компонент равно количеству элементарных признаков.

Введем исходные данные в электронную таблицу STATGRAPHICS (48*8).

Анализ методом главных компонент состоит из нескольких этапов:

  1. Необходимо получить данные о результатах анализа (таблица сводки) (рис.3)




рис.3 Сводка метода ГК
В Данной таблице содержится информация о результатах построения главных компонент: собственные значения главных компонент (eigenvalue), упорядоченных по величине, процент дисперсии (percent of variance), приходящейся на каждую выделенную главную компоненту, накопленный процент дисперсии (cumulative percentage).

На основе полученных результатов можно седлать вывод о том, что первые 2 компоненты дают 80 процентов дисперсии, что достаточно для проведения анализа распределения компонентов в пространстве.

  1. Далее проанализируем таблицу весов признаков (рис.4)



рис.4 Веса признаков в главных компонентах
Определим зависимость первой главной компоненты от признаков. Зависимость от того или иного признака определяется величиной признака.

Первая главная компонента в наибольшей степени зависит от 3 признаков:

объем кредитов, выданных физическим лицам, объем кредитов, выданных физическим лицам на покупку жилья, объем выданных ипотечных жилищных кредитов физическим лицам.

Ниже представлена проекция исследуемого множества на пространство трех ГК (рис.5).


рис.5 Проекция исследуемых объектов в пространство трех ГК
Из рис.5 видно, что исследуемая совокупность разделилась на три класса.

3) Определим значащие признаки в составе главных компонент по следующей формуле:

, где [wkj] – подмножество, участвующих в названии весовых коэффициентов j-й компоненты,

[wj] – все весовые коэффициенты j-й компоненты.

Ниже представлена таблица весовых коэффициентов первой ГК.


В соответствии с вышепредставленной формулой коэффициент информативности рассчитывается следующим образом:

= 0,8

Ки1 принадлежит интервалу [0,75,0,95], что говорит об определении ГК1 влиянием следующих признаков: объем выданных кредитов физическим лицам, объем кредитов, выданных физическим лицам на покупку жилья, объем выданных ипотечных жилищных кредитов физическим лицам.

4) Правило классификации на основе анализа методом главных компонент выглядит следующим образом:

ГК1= объем выданных кредитов физическим лицам *0,49+ объем кредитов, выданных физическим лицам на покупку жилья *0,53+ объем выданных ипотечных жилищных кредитов физическим лицам *0,52

Если объем выданных кредитов физическим лицам = малое, объем кредитов, выданных физическим лицам на покупку жилья = малое, объем выданных ипотечных жилищных кредитов физическим лицам =малое, объем выданных кредитов индивидуальным предпринимателям = малое, то класс = 1

Если объем выданных кредитов физическим лицам = среднее, объем кредитов, выданных физическим лицам на покупку жилья = среднее, объем выданных ипотечных жилищных кредитов физическим лицам = среднее, объем выданных кредитов индивидуальным предпринимателям = среднее, то класс = 2

Если объем выданных кредитов физическим лицам = большое, объем кредитов, выданных физическим лицам на покупку жилья = большое, объем выданных ипотечных жилищных кредитов физическим лицам = большое, объем выданных кредитов индивидуальным предпринимателям = большое, то класс = 3

В первый класс вошли объекты под номерами: 1-9, 11-17,19-28, 30-37, 39-42, 48,50,53,56.

Во второй класс вошли объекты под номерами: 42, 47, 51,38,52,55,45

В третий класс вошел один объект под номером: 10,18,29,43,46,49,54
1   2   3   4

Раздел 2 Интеллектуальный анализ данных о закономерностях



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации