Рынок ценных бумаг. Оптимизация портфеля инвестиций

скачать (5797.8 kb.)

  1   2   3
Введение
Корпорация или частная фирма, которой требуется заем, может получить необходимые деньги, взяв кредит в банке или выпустив долговые обязательства. Однако существует еще достаточно много способов привлечения средств компанией. Одной из наиболее распространенных форм финансирования собственного капитала компании является продажа части своих активов путем выпуска долевых ценных бумаг. Такие ценные бумаги называются акциями, а компания, их выпустившая, - акционерным обществом.

Среди корпораций, выпустивших акции, существуют закрытые акционерные общества, акции которых распределяются среди их учредителей, и открытые акционерные общества, акции которых продаются и покупаются свободно. Совладельцем объединенного имущества открытого акционерного общества может стать любой, кто приобрел хотя бы одну акцию. Высшим органом управления акционерного общества является общее собрание акционеров, на котором каждый акционер обладает правом голоса пропорционально сумме имеющихся у него акций. Именно на общем собрании акционеров выбирается правление корпорации, или совет директоров, которое руководит текущими делами акционерного общества.

Существуют два основных вида акций, различающихся по выплате дивидендов по ним и степени риска вложения капитала в них. Это обыкновенная акция и привилегированная акция.


1. Основные понятия
Привилегированные акции являются в некотором смысле смешанной формой финансирования, имеющие черты облигации и обыкновенной акции. С одной стороны, они определяют фиксированный доход (дивиденды), который должен выплачиваться через равномерные промежутки времени, чем напоминают купонные облигации. С другой стороны, они не имеют определенного срока погашения, поскольку могут быть выкуплены эмитентом в любое удобное для него время. Таким образом, как и обыкновенные акции, их следует отнести к бессрочным ценным бумагам.

Привилегированные акции получили свое название в силу того, что в случае ликвидации фирмы претензии владельца привилегированной акции удовлетворяются после претензий кредиторов, но раньше, чем обязательства компании перед обыкновенными акционерами. При этом, как правило, обязательства фирмы перед привилегированными акционерами удовлетворяются не более чем на сумму номинальной стоимости акций, которыми они владеют. Более того, хотя оговорено, что привилегированная акция приносит инвестору некий фиксированный дивиденд, в действительности выплата этих дивидендов скорее производится по усмотрению компании, чем является строгим обязательством, так как невыплата дивидендов не является нарушением обязательств перед кредиторами и тем самым не ведет к несостоятельности компании. Поэтому совет директоров имеет право принять решение проигнорировать выплату дивидендов по привилегированным акциям. Таким образом, хотя привилегированные акции и близки к облигациям, инвестиции в них являются более рискованными.

Привилегированные акционеры не имеют права голоса на общем собрании акционеров, в том числе и при избрании членов правления. Поэтому они не могут оказывать существенное влияние на состояние дел в компании за исключением той ситуации, когда компания на протяжении определенного пери ода не выплачивает дивиденды по привилегированным акциям. В этом случае привилегированные акционеры имеют право выбрать в правление определенное число директоров.

Рисковый капитал, который позволяет новым фирмам начинать свою деятельность, а существующим - расширяться, получается обычно путем продажи обыкновенных акций. Обладатели обыкновенных акций компании, или просто акционеры компании, являются ее владельцами. Поэтому они полностью принимают риски, связанные с владением капитала данной компании, а в случае ее ликвидации их претензии погашаются после полного удовлетворения требования кредиторов и привилегированных акционеров. Это означает, что в случае банкротства компании они несут убытки вместе с компанией и могут потерять часть своего инвестированного капитал или даже весь. С другой стороны, их возможные доходы ничем не ограничиваются. Если компания успешно ведет дело и цены на ее акции растут, то инвестор может ожидать получения хороших дивидендов по акциям этой компании, а также прибыль при продаже акций на рынке. Дивиденды на обыкновенные акции являются распределением прибыли компании среди ее владельцев и зависят от того, сколько заработала корпорация в текущем году и какой является дивидендная политика правления компании. Так как обладатели обыкновенных акций являются владельцами компании, они имеют право голоса при избрании совета директоров и тем самым имеют возможность влиять на экономическую политику и практическую деятельность компании.

Существуют и другие виды акций, оговаривающие долю участия акционера, специальный способ выплаты ему дивидендов и т.п.

Многих инвесторов покупка акций привлекает не дивидендами, а возможностью получать доход на колебаниях цен акций, покупая их по низкой цене, перед тем как большинство участников фондового рынка начнут это делать, и продавая по высокой цене, перед тем как другие будут это делать.

Рыночная цена акции данной фирмы во многом будет зависеть от рискованности ее будущих доходов, от отношения акционеров к риску и, конечно, от уровня процентных ставок по безрисковым ценным бумагам. Чтобы оценить эту величину, требуется проанализировать достаточно большой объем информации, влияние которой на значение цены акции или прибыли при инвестиции в нее порой носит неопределенный характер. В условиях такой неопределенности оценка требуемых величин может быть основана только на построении стохастических математических моделей. Такого рода модели довольно часто используются в экономике и основаны на логических принципах раздела математики, называемого теорией вероятностей.

Удобный способ формализации неопределенности состоит в использовании концепции «состояния мира». Состояние полностью определяет все переменные, являющиеся внешними по отношению к рынку. Например, состояние может включать спрос на продукцию фирмы, цены ресурсов и полуфабрикатов и т. д. Представим себе всю экономику мира как некоторый случайный эксперимент. Тогда множество исходов этого эксперимента и есть множество состояний мира. В теории вероятностей такое множество называется пространством элементарных событий и обозначается . Тогда каждое элементарное событие есть исход нашего эксперимента или состояние мира. Принято различать пространство элементарных событий на два типа: дискретное и непрерывное. Под дискретным множеством состояний понимается конечное или счетное множество. Все остальные относятся к непрерывным.

Численной оценкой шансов появления того или иного случайного события А является его вероятность Р(А). Так как любое случайное событие, связанное с экспериментом, можно разложить на благоприятствующие ему исходы, то вероятность его появления однозначно определяется, если нам заданы вероятности элементарных событий. В случае дискретного вероятностного пространства это означает, что каждому возможному исходу приписана вероятность . Если же множество исходов непрерывно, то будем предполагать, что на задана некоторая числовая функция , являющаяся плотностью вероятности Р. Тогда вероятность события А определяется по формулам:

для дискретного случая
,
для непрерывного случая
.
Вероятность принимает неотрицательные значения и обладает свойством нормированности (т.е. ), введенные функции неотрицательны и удовлетворяют следующим соотношениям в дискретном и непрерывном случаях соответственно:
и
В условиях случайного эксперимента любой числовой параметр является функцией от возможного исхода .

Такие функции в теории вероятностей называются случайными величинами. Каждой случайной величине ставятся в соответствие ее числовые характеристики. Основными из них являются математическое ожидание E и дисперсия D. В случае дискретного вероятностного пространства они находятся по формулам:


(1)

(2)
Если вероятность определяется плотностью , то
(3)

(4)
В силу неотрицательности вероятностей дисперсия D есть величина неотрицательная. Поэтому можно определить квадратный корень из дисперсии:

Величина называется средним квадратичным отклонением. Очевидно, что . Как принято, данная величина характеризует стохастичность случайной величины . Это означает, что, чем больше , тем более случайной является функция . В частности, если , то с вероятностью 1 не зависит от исходов эксперимента, то есть является неслучайной константой.

Нетрудно показать, что для заданных констант А и В математическое ожидание и дисперсия случайной величины A+В выражаются через числовые характеристики случайной величины следующим образом:


, (5)
Если нам заданы две случайные величины и , то их совместное распределение определяет ковариацию cov(,) по формулам:

в дискретном случае
,
в непрерывном случае
.
Очевидно, что


.
Большое значение при оценке взаимовлияния случайных величин друг на друга имеет коэффициент корреляции определяемый как
.
В некотором смысле он понимается как косинус угла наклона между возможными направлениями двух случайных величин. Так же, как обычный косинус некоторого угла, коэффициент корреляции принадлежит отрезку [-1, 1], то есть .
2. Портфель инвестиций
Чтобы все фирмы были в равных по времени условиях, будем предполагать, что через единицу времени все фирмы ликвидируются, а полученные доходы распределяются среди акционеров в качестве дивидендов. Дивиденды, выплачиваемые на акции каждого типа, будем считать случайными величинами. Другими словами, существует некоторое пространство элементарных событий с заданной на нем вероятностью Р.

Через дивиденд, обозначим, выплачиваемый на акцию в состоянии . Пусть S - цена акции в начальное время. Тогда

является доходностью акции в состоянии . Так как это случайная величина, то ей можно поставить в соответствие математическое ожидание и дисперсию . Таким образом, каждой акции мы ставим в соответствие ожидаемую доходность и среднее квадратическое отклонение , = 1, 2,..., N. Взаимная зависимость акций определяется матрицей ковариации, каждый элемент которой равен
.
В частности,


.
Рассмотрим теперь некоторого инвестора, имеющего капитал W и желающего весь его инвестировать в имеющиеся акции с целью получения дохода через единицу времени. Допустим, что - число акций типа , купленных в начальный период. Тогда
. (6)
Обозначим через
(7)
долю инвестиций в акции . Набор действительных чисел
,
удовлетворяющих условию
, (8)
называется портфелем инвестиций. В большом количестве примеров помимо ограничения (8) вводится условие неотрицательности активов . Однако в общем случае можно предположить, что у инвестора имеется возможность взять взаймы любое количество акций и продать их на рынке в начальный момент времени. Такое действие называют открытием коротком позиции по акции , и в этом случае и - отрицательные числа. Через единицу времени инвестор обязан закрыть короткую позицию, вернув своему кредитору соответствующие акции. Обычная покупка акций , естественно, понимается как открытие длинной позиции по данной акции. В дальнейшем мы не будем ставить какие-либо ограничения на открытие короткой позиции по акциям, если это не будет оговариваться в контексте. Вне зависимости от коротких и длинных позиций по акциям будем считать, что балансовые уравнения (6) - (8) всегда вы полнены. Это означает, что весь капитал инвестора используется в портфеле инвестиций.

Рассчитаем теперь случайную величину доходности портфеля :
.
С учетом формул (6) - (8) получаем, что
.
Тогда ожидаемая доходность портфеля и его дисперсия находятся по формулам:
(9)

(10)


Полагая в качестве оценки риска портфеля меру случайности доходности портфеля - среднее квадратическое отклонение, для каждого допустимого портфеля на плоскости «риск-Доходность» можно отметить точки, координаты которых равны среднему квадратическому отклонению и ожидаемой доходности портфеля. В случае с запретом на открытие коротких позиций, когда , это приведет к рисунку 1. Данный рисунок показывает возможные соотношения между риском и доходностью на данном рынке. Заметим, что каждая точка в заштрихованной области соответствует портфелю инвестиций. Если инвестор заинтересован в максимизации ожидаемой доходности и минимизации риска (в данном случае среднего квадратического отклонения), то для него играет роль правило левого верхнего угла. Суть этого правила состоит в том, что если выбрать некоторый портфель и на соответствующей ему точке А на плоскости «риск-доходность» построить левый верхний угол, то любой портфель с соответствующей ему точкой А из построенного угла является для инвестора более предпочтительным, чем первоначально выбранный портфель (см. рис. 1).

Для каждого допустимого значения доходности можно выбрать граничную точку построенной области как точку, соответствующую портфелю инвестиций с заданной ожидаемой доходностью и наименьшим значением риска.


Рис. 1. Плоскость «риск-доходность»


На рисунке 1 это точка В. Понятно, что для инвестора координаты граничных точек и соответствующие им портфели являются наиболее важными с точки зрения оптимального выбора инвестиций, так как с учетом правила левого верхнего угла для любой внутренней точки области всегда найдется более предпочтительная точка на границе. Форма границы в общем виде имеет достаточно сложный вид, который в теории принято называть формой пули.

Главное свойство этой кривой состоит в том, что она является выпуклой влево. Этот факт основан на следующих рассуждениях. Рассмотрим простейший случай, когда на рынке имеются два вида акций, то есть N = 2. В этом случае область допустимых точек на плоскости «риск-доходность» будет кривой, которую можно определить параметрически следующим образом. Пусть t - параметр кривой. Положим = t - доля акций первого типа, = 1 - t - доля акций второго типа. Тогда допустимые портфели однозначно определяются параметром t. Нетрудно увидеть, что ожидаемая доходность такого портфеля

есть линейная функция от t. Соответственно, дисперсия доходности портфеля равна

И является квадратным трехчленом от параметра t. Поэтому Множество точек на плоскости «риск-доходность» будет частью гиперболы, проходящей через точки и , определяющих риск и доходность акций первого и второго типов соответственно (см. рис. 2). Для определенности на рисунке 2 рассмотрен частный случай, когда и. Все другие возможные случаи аналогичны.





Рис. 2. Кривая «риск-доходность» портфеля из двух акций
Рассмотрим теперь отрезок, соединяющий вершины и . Параметрически каждая точка этого отрезка определяется координатами , где
. (11)
Тогда для доказательства выпуклости влево построенной кривой необходимо убедиться, что для любого точка находится левее точки . Проверим, что в действительности
или
Для этого преобразуем формулу дисперсии доходности портфеля в следующем виде



Тогда с учетом (11) получаем, что
(12)
Так как параметр t берется из интервала (0,1), знак второго слагаемого в правом выражении выписанного равенства определяется разностью . Рассмотрим коэффициент корреляции , определяющий зависимость доходностей акций первого и второго типов. По определению, ковариация может быть получена из коэффициента корреляции по следующей формуле:
.
Подставляя это в равенство (12) и взяв корень, находим, что
. (13)
Так как коэффициент корреляции удовлетворяет неравенствам отсюда сразу следует, что , причем равенство здесь возможно только в том случае, если . Таким образом, при имеет место строгое неравенство , и, значит, выпуклость влево построенной кривой. Как уже было замечено, если коэффициент корреляции равен единице, то и построенная кривая есть отрезок, соединяющий точки и . В этом вырожденном случае вероятностными методами нетрудно показать, что доходности и как случайные величины связаны между собой линейной зависимостью почти наверное:


п.н., (14)
с положительным коэффициентом линейной зависимости (здесь константы и неслучайны). Это означает, что рассматриваемые акции являются сильно зависимыми и риск инвестиций в портфель из этих акций может быть уменьшен только пропорционально уменьшению ожидаемой доходности портфеля. Противоположной данному случаю является ситуация, когда коэффициент корреляции . В этом случае также имеет место линейная зависимость (14). Если в результате доходность по одной акции оказалась отрицательной, то доходность по другой обязательно положительна. Последнее дает возможность снизить риски до минимального для этого вырожденного случая. Рассмотрим вид допустимой кривой на плоскости «риск-доходность» при условии . Подставляя это значение в формулы (11) и (13), получаем

В силу свойств модуля, в итоге имеем, что

Следовательно, в этом случае кривая будет представлять собой два прямых отрезка и (см. рис. 3). Нетрудно увидеть, что, при , и портфель является безрисковой инвестицией с неслучайной доходностью , равной



Это означает, что в рассматриваемой вырожденной ситуации можно подобрать портфель акций таким образом, что риск инвестиций в этот портфель станет нулевым.



Рис. 3. Зависимость кривой «риск-доходность» от коэффициента корреляции
Таким образом, допустимые кривые на плоскости «риск-доходность» являются дугами гиперболы с концами в точках и . Как видно из рисунка, чем меньше коэффициент корреляции по акциям, тем более выпуклой является дуга гиперболы, а значит, тем больше возможностей уменьшить риск по портфелю инвестиций.
  1   2   3



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации