Производство аммиака

скачать (628.3 kb.)

  1   2   3
Федеральное агентство по науки и образованию Российской Федерации

НовГУ имени Ярослава Мудрого

Кафедра Химии и Экологии


Курсовая работа по химической технологии

«Производство аммиака»
Выполнил׃

Студент ИСХиПР

Группы 6651

Сыров Константин Михайлович

Великий Новгород 2010 год
АГРЕГАТ СИНТЕЗА АММИАКА
Физико-химические основы синтеза аммиака

Реакция синтеза аммиака из газообразных азота и водорода является обратимой и протекает по уравнению

H2+N2=2NH3+22 ккал.

При определенных условиях наступает состояние равновесия между прямым и обратным процессами, при котором невозможно дальнейшее увеличение содержания аммиака в газовой смеси. На практике стараются создать такие условия, при которых равновесие реакции сдвигается в сторону образования аммиака из азота и водорода.

Так как реакция синтеза аммиака сопровождается уменьшением объема газовой смеси вдвое, то для сдвига равновесия вправо, согласно принципу Ле Шателье, процесс следует проводить при повышенном давлении. В промышленности установки по производству синтетического аммиака работают под давлением 300-900 ат.

Реакция синтеза протекает с выделением тепла. Поэтому согласно принципу Ле Шателье, с повышением температуры равновесие реакции сдвигается влево, т. е. чем выше температура, тем меньше азота и водорода вступают в реакцию. При низкой температуре реакция синтеза аммиака протекает более полно.

Однако с понижением температуры скорость большинства химических реакций, в том числе и скорость реакции синтеза аммиака, уменьшается. Поэтому для обеспечения значительной скорости образования аммиака реакцию необходимо проводить при достаточно высокой температуре. Практически синтез аммиака ведется при температуре 450- 500° С, при которой реакция протекает достаточно быстро и содержание аммиака в газовой смеси сравнительно высоко.

По закону действия масс для сдвига равновесия реакции синтеза аммиака вправо необходимо в равновесной газовой смеси увеличить концентрацию азота и водорода или уменьшить концентрацию аммиака. Последнее осуществляется на практике. После того, как из азота и водорода образовалось некоторое количество аммиака, газовую смесь выводят из колонны синтеза и освобождают ее целиком или частично от аммиака. Затем к газовой смеси добавляют свежие азот и водород и вновь пропускают ее через колонну синтеза. Повторяя этот процесс непрерывно, добиваются почти полного использования азотоводородной смеси.

Образовавшийся аммиак выделяется из газовой смеси путем конденсации его. Превращение газообразного аммиака в жидкость, т. е. процесс конденсации, осуществляется охлаждением газовой смеси водой и испаряющимся аммиаком. В системах синтеза аммиака, работающих при давлениях 300 ат и ниже, охлаждение газовой смеси производится в две стадии: водой в скоростных холодильниках и испаряющимся жидким аммиаком - в аммиачных испарителях.

Содержание аммиака в газовой смеси на выходе из колонны синтеза зависит еще и от объемной скорости. Чем больше последняя, тем меньше времени газовая смесь находится в колонне синтеза аммиака, заполненной катализатором. С увеличением объемной скорости содержание аммиака в газовой смеси уменьшается.

Для каждого давления существует своя оптимальная объемная скорость газа, обеспечивающая максимальное использование катализатора и максимальную производительность всех аппаратов, входящих в систему синтеза аммиака.

В зависимости от величины давления азотоводородной смеси системы синтеза аммиака делятся на три типа:

. Системы, работающие при низких давлениях (90- 100 ат).

. Системы, работающие при средних давлениях (200- 350 ат).

3. Системы, работающие при высоких давлениях (500- 1000 ат).

Широкое распространение в Советском Союзе и за границей получили системы синтеза аммиака, работающие при средних давлениях. Системы низкого давления в виду их сложности в промышленности применяются мало.

Катализатор синтеза аммиака должен быть активным при определенных условиях в течение длительного времени и стойким к ядам.

Каталитическими свойствами по отношению к реакции синтеза аммиака обладают многие металлы. Наибольшее промышленное применение получили железные катализаторы, являющиеся по сравнению с другими особенно активными и дешевыми в изготовлении.

Железо приобретает каталитическую активность лишь в том случае, если оно приготовлено восстановлением окислов железа при определенных условиях.

Не вся масса катализатора обладает активными свойствами, а лишь отдельные его участки, называемые активными центрами. Чем меньше частицы катализатора, тем более развита его поверхность, тем активнее катализатор.

К железному катализатору добавляют окись алюминия Аl2О3 и окись калия К2О, которые являются активаторами катализаторов. Активаторы не ускоряют реакцию синтеза аммиака, а улучшают физическую структуру катализатора, повышают его устойчивость, увеличивают число активных центров. Окись алюминия обволакивает кристаллы железа тонкой пленкой, которая мешает взаимодействию атомов железа и росту кристаллов. Однако окись алюминия обладает свойством адсорбировать, т. е. удерживать на своей поверхности образовавшийся аммиак, что является крайне нежелательным. Для подавления адсорбционной активности окиси алюминия в катализатор вводят второй активатор К2О.

В дважды промотированных (содержащих два активатора) катализаторах отношение количеств Аl2О3 и К2О должно быть близким к 2 : 1 .

Сырьем для получения катализаторов являются железо и магнитная железная руда. Процесс приготовления катализатора состоит из двух стадий: получения окислов железа и восстановления их водородом до металлического железа.

Технический процесс получения катализатора синтеза аммиака из железной руды осуществляется следующим образом: концентрат подвергают трехкратной сепарации, восстановлению в печи с помощью водорода и электроплавке в индукционных печах, затем плав окисляют, охлаждают и дробят. Готовый катализатор сортируют.

С июня 1967 г. введен первый ГОСТ на катализатор синтеза аммиака СА-1 (ГОСТ 12411-66). В соответствии с указанным ГОСТ лимитируется содержание промотирующих и примесных компонентов. Содержание окиси алюминия в катализаторе должно быть в пределах 3 - 4%. При содержании в катализаторе 2% Аl2О3 резко уменьшается его устойчивость, а при содержании 6% Аl2O3, значительно снижается активность катализатора. Оптимальное содержание К20 0,7-1%.

В катализаторе допускается наличие SiO2 - до 0,7% (примесь сырья) и МgО - до 0,7% (примесь, попадающая при проведении плавки в магнезитовых тиглях). Содержание вредных примесей (Си, Ni, S) должно быть минимальным.

С целью повышения механической прочности катализатора ГОСТ предусматривает уменьшение степени окисления катализаторного плава (FеО -29-36%) и выпуск гранулированного катализатора с размером зерен (гранул) -не менее 3 мм.

Вторая стадия приготовления катализатора - восстановление окислов железа до элементарного железа водородом - в большинстве случаев проводится в колоннах синтеза аммиака.

Процесс восстановления катализатора протекает по уравнениям:
FеО + Н2 = Fе + Н2О;
Fе2О3 + ЗН2 =2Fе + ЗН2О

Fе304 + 4H2 =ЗРе + 4Н20.
Водяные пары конденсируются в конденсаторах и отделяются от газовой смеси в сепараторах и в конденсационной колонне. Реакции восстановления окислов железа эндотермичны и протекают лишь при нагревании, которое осуществляется с помощью электроподогревателя.

Восстановление окислов железа проводят при постепенном повышении температуры и давления. Объемная скорость водорода при восстановлении катализатора должна быть не ниже 10 000 м3 на 1 м3 катализатора в час. Режим восстановления катализатора контролируется по часовому количеству воды, выделяющейся в сепараторах. Процесс восстановления катализатора в колонне синтеза аммиака протекает в течение 5-6 суток.

О готовности катализатора судят по количеству выделившейся реакционной воды и по содержанию аммиака в ней. Общее количество выделившейся аммиачной воды при полном восстановлении 1 м3 катализатора должно составлять 0,6-0,8 м3. Содержание аммиака в воде 80- 90% вес.

В последнее время разработана методика восстановления катализатора синтеза аммиака непосредственно в цехах приготовления катализаторов. Процесс восстановления осуществляется под давлением 10-15 ат при объемной скорости водорода 2000-3000 м3 на 1 м3 катализатора в час. Восстановление катализатора длится в течение 4 суток с повышением температуры от 380 до 500° С (через каждые 12 ч -на 25°). После восстановления катализатор азотируют и пассивируют при температуре 200° С, а затем производят его поверхностное окисление при содержании в газе 0,2% кислорода.

В процессе работы катализатор может отравляться катализаторными ядами, в результате чего его активность снижается или полностью исчезает.

Отравление катализатора, как известно, бывает временным и постоянным. Такие вещества, как кислород, окись углерода, углекислый газ и пары воды вызывают временное отравление катализатора. Последний под действием этих веществ теряет свою активность и вновь восстанавливает ее при пропускании чистой азотоводородной смеси, не содержащей указанных веществ. Постоянное отравление катализатора является необратимым. Оно наступает при действии мышьяка, фосфора и соединений серы. Восстановить активность катализатора при отравлении его этими веществами путем пропускания чистой азотоводородной смеси не удается.

При попадании на катализатор паров воды металлическое железо окисляется и теряет свою активность. Процесс отравления катализатора водяными парами протекает по уравнениям:
Fе + Н2О = FеО + Н2;

Fе + ЗН2О = Fе2О3 + ЗН2.
При пропускании через катализатор азотоводородной смеси, не содержащей паров воды, идет обратный процесс восстановления окислов. Содержащиеся в азотоводородной смеси окислы углерода реагируют с водородом по уравнениям
СО +ЗН2=СН4 + Н2О

CO2+4H2=СН4+ 2Н20.
Образующиеся водяные пары взаимодействуют затем с железом катализатора. Содержание окиси углерода в азотоводородной смеси не должно превышать 0,002%, двуокиси углерода - 0,0001%.

Отрицательное действие на активность катализатора оказывают также масла, уносимые свежей азотоводородной смесью из компрессоров высокого давления и циркуляционным газом - из поршневых циркуляционных насосов. Поэтому газ после сжатия в поршневых машинах должен подвергаться тщательной очистке от капелек масла.

Срок непрерывной работы колонны синтеза зависит от ряда факторов: степени очистки азотоводородной смеси от катализаторных ядов, режима восстановления катализатора и состояния насадки колонны. Замена катализатора производится один раз в два года. Однако в практике нередки случаи, когда срок непрерывной работы колонны превышает три года.


  1   2   3



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации