Специальные методы решения алгебраических уравнений. Решения уравнений высших степеней

скачать (254.5 kb.)

  1   2
Одесское территориальное отделение

Малой академии наук Украины

Секция математики


Специальные методы решения алгебраических уравнений.

Решения уравнений высших степеней


Автор: Касьян Наталья

Ученица 10-М класса

Одесской школы №20

Руководитель:

Касьян Л. Ю.

Научный руководитель

Одесса 2003


Содержание:

1.Определение алгебраического уравнения.

2.История развития науки о решении алгебраических уравнений.

3.Специальные методы решения алгебраических уравнений.

4.Вывод.

5.Список литературы.
Известный немецкий математик Курант писал: «На протяжении двух с лишним тысячелетий обладание некоторыми, не слишком поверхностными, знаниями в области математики входило необходимой составной частью в интеллектуальный инвентарь каждого образованного человека». И среди этих знаний было умение решать уравнения.

Уравнение - аналитическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются обычно неизвестными, а значения неизвестных, при которых значения функций равны, - решениями, или корнями, уравнения. О таких значениях неизвестных говорят, что они удовлетворяют данному уравнению.

Совокупность решений данного уравнения зависит от области М значений, допускаемых для неизвестных. Уравнение может не иметь решений в М, тогда оно называется неразрешимым в области М. Если уравнение разрешимо, то оно может иметь одно или несколько, или даже бесконечное множество решений. Например, уравнение x4 – 4 = 0 неразрешимо в области рациональных чисел, но имеет два решения: x1 = , x2 = - в области действительных чисел и четыре решения: x1 = =, x2 = -, x3 = i, x4 = -i   в области комплексных чисел. Уравнение sin x = = 0 имеет бесконечное множество решений: xk = k, k = 0, 1, 2, …, в области действительных чисел.

Если уравнение имеет решениями все числа области М, то оно называется тождеством в области М.

Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого, и наоборот, причём оба уравнения рассматриваются в одной и той же области.

Процесс разыскания решений уравнения заключается обычно в замене уравнения равносильным. Замена уравнения равносильным основана на применении четырёх аксиом:

  1. Если равные величины увеличить на одно и тоже число, то результаты будут равны.

  2. Если из равных величин вычесть одно и тоже число, то результаты будут равны.

  3. Если равные величины умножить на одно и тоже число, то результаты будут равны.

  4. Если равные величины разделить на одно и тоже число, то результаты будут равны.

В некоторых случаях приходится заменять данное уравнение другим, для которого совокупность корней шире, чем у данного уравнения. Поэтому, если при решении уравнения делались действия, могущие привести к появлению посторонних корней, то все полученные корни преобразованного уравнения проверяют подстановкой в исходное уравнение.

Наиболее полно изучены алгебраические уравнения. Их решение было одной из важнейших задач алгебры в 16-17 вв. Уравнения вида = 0, где - многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

= a0xiyi … vk + a1x1ym … vn + asxpyq … vr,

где x, y, …, v – переменные, а i, j, …, r – показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так:

= a0xn + a1xn-1 + … + an-1x + an.

Например, 3x4 – x3 + 2x2 + 4x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида = 0. Если a00, то n называется степенью уравнения. Например, 2x + 3 = 0 – уравнение первой степени. Уравнения второй степени называются линейными. Уравнение второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Решение линейного уравнения ax + b = 0 записывается в виде x = -.

Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы
x=

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений только третьей и четвёртой степеней. Но и эти формулы сложны и далеко не всегда помогают легко найти корни. Что касается уравнений пятой степени или выше, то для них, как доказал Н. Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удаётся легко решить, факторизуя их левую часть, то есть разлагая её на множители.

Например, уравнение x3 + 1 = 0 можно записать в виде (x + 1)(x2 – x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

x + 1 = 0,


x2 – x + 1 = 0.

Таким образом, корни равны x = -1, , то есть всего три корня. Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твёрдая уверенность в том, что решение существует: алгебраическое уравнение n-й степени имеет ровно n корней.

Уже в древности люди осознали, как важно научиться решать алгебраические уравнения.

К ним сводятся очень многие и очень разнообразные вопросы практики и естествознания (конечно, здесь можно сразу предполагать, что a00, так как иначе степень уравнения на самом деле не n, а меньше). Многим, разумеется, приходила в голову заманчивая мысль найти для любо степени n формулы, которые выражали бы корни уравнения через его коэффициенты, то есть, решали бы уравнение в радикалах. Однако «мрачное средневековье» оказалось как нельзя более мрачным и в отношении обсуждаемой задачи – в течение целых семи столетий требуемых формул никто не нашёл! Только в 16 веке итальянским математикам удалось продвинуться дальше – найти формулы для n=3 и n=4. История их открытий и даже авторства найденных формул достаточно темны по сей день, и мы не будем здесь выяснять сложные отношения между Ферро, Кардана, Тартальей и Феррари, а изложим лучше математическую суть дела.

Рассмотрим сначала уравнение

а0x3 + a1x2 + a2x + a3 = 0.

Легко проверить, что если мы положим x = y - , где y – новое неизвестное, то дело сведется к решению уравнения

y3 + py + q = 0,

где p,q – новые коэффициенты. Счастливая догадка итальянцев состояла в том , чтобы искать y в виде суммы y = u + v,где u,vдва новых неизвестных. Для них уравнение перепишется – после небольшой перегруппировки слагаемых – так:

u3 + v3 + (3uv + p)(u + v0) + q = 0

Так как неизвестных теперь два, на них можно наложить еще какое- нибудь условие – лучше всего

3uv + q = 0,

тогда исходное уравнение примет совсем простой вид

u3 + v3 + q = 0.

Это означает, что сумма кубов u3, v3 должна равняться – q, а их произведение -. Следовательно, сами u3, v3 должны быть корнями квадратного уравнения

t2 + qt = 0,

а для него формула уже известна. В итоге получается формула

y = +

причем из девяти пар значений входящих в нее кубических радикалов надо брать только пары, дающие в произведении –p/3, как вытекает из нашего рассуждения. Исторически за этой формулой закрепилось название формулы Карнадо, хотя вопрос о ее авторстве так до конца и не выяснен.

Для n = 4 формулу открыл Феррари, она выглядит сложнее, но тоже использует только четыре арифметических действия и извлечение радикалов. Вот набросок вывода формулы Феррари. Прежде всего, подобно предыдущему, положим

x = y - , тогда дело сведется к решению уравнения вида

y4 + pq2 + qy + r = 0.

Дополнив y4 до (y2 + z)2, т.е. прибавив и вычтя в левой части 2zy2 + z2, где zвспомогательное неизвестное, получим

(y2 + z)2 - .

Подберем теперь z так, чтобы квадратный трёхчлен в квадратных скобках оказался полным квадратом. Для этого нужно, чтобы его дискриминант равнялся нулю, т.е. чтобы было

q2 - 4(2z – p)(z2 – r) = 0.

Можем ли мы решить это уравнение относительно z? Да, можем, так как оно кубическое. Пусть z0 какой-нибудь его корень (даваемый формулой Кардано) тогда исходное уравнение перепишется в виде

y1 =, y2 = ,

y3 = y4 =

При этом знаки перед радикалами выбирают так, чтобы выполнялось равенство

В 1770-71 гг. знаменитый французкий математик Лагранж (1736-1819) публикует в Мемуарах Берлинской Академии свой мемуар «Мысли над решением алгебраических уравнений», в котором делает критический пересмотр всех решений уравнений 3-й и 4-й степеней, данных его предшественникам.

Исследования Лагранжа дали для последующих алгебраистов весьма удобный аппарат. Кроме того, они указали путь, по которому следовало искать доказательства невозможности общего решения уравнений в радикалах.

Дальнейшим этапом в выяснении проблемы решения уравнений в радикалах послужили работы Руффини (P.Ruffini, 1765-1822) и Абеля (N.-H. Abel, 1802-1829). Руффини (1799) предложил доказательство неразрешимости в радикалах уравнении 5-й степени, коэффициенты которого являются независимыми. Однако его доказательство окончилось неудачей.

Нужен был принципиально новый подход. На этот раз он не заставил себя долго ждать – уже в 1824 году молодой (и в возрасте 27 лет умерший) норвежский математик Нильс Генрик Абель, опираясь на идеи Лагранжа, связанные с перестановками корней уравнения, доказал, что требуемых формул, которые решали бы в радикалах уравнение решали бы в радикалах уравнение общего вида, при n5 действительно не существует. Теорема Абеля дала отрицательны ответ только для уравнений общего вида, т.е. с буквенными коэффициентами а0, а1, …, аn, но, разумеется, многие конкретные уравнения сколь угодно высокой степени вполне могут решаться в радикалах (пример: уравнение x90 + 5x45 + 7 = 0). Поэтому сразу же встал вопрос о полном решении задачи – нахождении критерия разрешимости уравнений в радикалах, т.е. необходимого и достаточного условия, которое по коэффициентам а0, а1, …, аn любого заданного уравнения позволяло бы судить, решается уравнение в радикалах или нет.

Вопрос о разрешимости уравнений в радикалах был окончательно разобран, во всяком случае, принципиально, в работах Галуа (Evariste Galois, 1811-1832). За свою короткую жизнь Галуа успел создать теорию, которая до сих пор стоит в фокусе математической мысли. Рассматривая численные уравнения, он установил понятие их
  1   2



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации