Несколько способов решения одной геометрической задачи

скачать (646.5 kb.)

  1   2
Муниципальное образовательное учреждение

Новоусадская СОШ

Творческая работа по геометрии.

«Несколько способов решения одной геометрической задачи»

ученика 11 класса

…………..

Руководитель:

учитель I

категории

Шмонина С.Ю.

2006 год.

Введение.


Общеизвестно, что учащиеся прочно усваивают только то, что прошло через их индивидуальные усилия. Проблема самостоятельности учащихся при обучении не является новой. Этому вопросу отводили исключительную роль ученые всех времен. Особенно четкие концепции о роли самостоятельности в приобретении знаний имеются в трудах К.Д.Ушинского, Д.И.Писарева и др. Эта проблема является актуальной и сейчас. Внимание к ней объясняется тем, что самостоятельность играет весьма важную роль не только при получении среднего образования, но и при продолжении обучения после школы , а также в дальнейшей трудовой жизни школьников.

В наше время, в условиях развития рыночной экономики, когда наблюдается небывалый рост объема информации, от каждого человека требуется высокий уровень профессионализма и такие деловые качества как предприимчивость, способность ориентироваться, быстро и безошибочно принимать решения, а это невозможно без умения работать творчески.

Математика является наиболее удобным предметом для развития творческих способностей учащихся. Этому способствует логическое построение предмета, четкая система упражнений для закрепления полученных знаний и абстрактный язык математики. Воспитание самостоятельности у учащихся постепенно в течение всего периода обучения и предусматривает способность полноценно аргументировать, выделять главное, существенное, умение рассуждать, доказывать, находить рациональные пути выполнения заданий, делать соответствующие выводы, обобщать и применять их при решение конкретных вопросов.

Сущность самостоятельной работы заключается в том, что она выполняется учеником без непосредственного участия учителя, но по его заданию и под его контролем. Существуют разные подходы к классификации самостоятельных работ . Подразделяют их на обучающие и контролирующие, творческие и репродуктивные, устные и письменные, на общие, групповые и индивидуальные, на классные и домашние.

Творческие самостоятельные работы, включающие возможность решение задач несколькими способами, составление задач и примеров самими учащимися и т.п. наиболее важны из всех видов самостоятельных работ. Они требуют от учащихся собственной инициативы, будят мысль, заставляют анализировать и осуществлять самостоятельные решения.

В своей работе я рассмотрел различные методы решения геометрических задач и применение данных методов к решению одной геометрической задачи. Во-первых, эта тема меня очень заинтересовала, когда мы проходили её на уроках геометрии, и я решил узнать больше о методах решения. Во-вторых, методы решения геометрических задач занимают особое место в математике, поскольку решение их вызывает определенные трудности у учеников и абитуриентов.

I.Методы решения геометрических задач.



Говоря о поисках решения геометрической задачи, приходится иметь ввиду, что существуют различные методы её решения. Поэтому поиски прежде всего следует направить на выбор конкретного метода. Условно можно разбить на следующие группы:
§1. Традиционный метод.

Связан с использованием соотношений в треугольнике и круге, признаками равенства и подобия и др. Часто приходится проводить дополнительные построения, например, описанные окружности.
§2. Метод геометрических преобразований.

Связан с применением преобразований плоскости и пространства (параллельный перенос, симметрия, гомотетия и т.п.).
§3. Векторный метод.

Связан с использованием векторов, в частности скалярного и векторного произведений.

§4. Тригонометрический метод.


Использует применение тригонометрии, теорем синусов и косинусов.

§5. Переформулировка задачи.


Замена задачи другой, эквивалентной данной.


Перечисленные методы могут пересекаться, в одном решении может применяться несколько методов. Например, можно заменить исходную задачу другой, которую решают с помощью векторов и преобразований.

При решении геометрических задач полезно показать, что рассматриваемую задачу можно решить различными методами, и если один способ не приводит к цели или слишком громоздок, то лучше обратиться к другому. «Лучше решить одну задачу несколькими методами, чем несколько задач - одним» (Д.Пойя).

II.Примеры решения задач данными методами.
Прежде чем перейти к рассмотрению выбранной мною задачи, хотелось бы показать, как происходит поиск решения на примере, используя некоторые из вышеперечисленных методов.
З а д а ч а. Треугольники АВС и А1В1С1 не имеют общих точек, кроме вершины С, и АСА1 = ВСВ1 = 90°, СА=СА1, СВ=СВ1. Доказать, что медиана СD треугольника АВС перпендикулярна прямой А1В1.


Рис.1
Заметим прежде всего те свойства фигуры, которые сразу бросаются в глаза:

1°. Треугольники АСА1 и ВСВ1 прямоугольные и равнобедренные.

2°. АСВ + А1СВ1 = 180°.

Рассмотрим различные способы использования этих свойств.
Р е ш е н и я.
1 способ. На рисунке присутствует несколько прямых углов с одной вершиной, поэтому напрашивается использование поворота на 90° вокруг точки С. Пусть при таком повороте треугольник А1В1С1 переходит в треугольник А2ВС. Тогда точки А, С и А2 лежат на одной прямой и С – середина АА2. Следовательно, СD есть средняя линия треугольника АВА2 и поэтому СD А2В. Но А2В А1В1 по свойству повороту, значит, CD A1B1.
II способ. Воспользуемся векторным произведением векторов.



А1В1∙ 2CD = (СВ1 – СА1)(СА + СВ) = СВ1∙СА – СА1∙СА + СВ1∙СВ – СА1∙СВ = СА ∙СВ1∙cos ACB1 – 0 + 0 - CA∙CB∙cos A1CB = 0, так как АСВ1 = А1СВ = 90° + АСВ.

Вывод: CD A1B1.
III способ (традиционный). Продолжим сторону АС до точки А2 так, что АС = А2С (рис. 1). Тогда из замеченного выше свойства 2° следует: А2СВ = А1СВ1, и треугольники А2СВ и А1СВ1 равны. В треугольнике АВА2 отрезок CD – средняя линия и поэтому CD А2В. Из равенства треугольников получаем СВМ = СВ1М. Значит, вокруг четырехугольника МСВВ1 можно описать окружность с диаметром ВВ1. Отсюда угол ВМВ1 опирается на диаметр и А2В А1В1 . Следовательно, CD A1B1.
IV способ (традиционный). Достроим треугольник АВС до параллелограмма САКВ (рис.2).


Рис.2
Тогда ∆САК = ∆А1СВ1 по двум сторонам и углу между ними и , следовательно, СА1В1 = АСК = ?. Продолжим прямую СК до пересечения с отрезком А1В1 в точке Е. Тогда А1СЕ = 180° - 90° - ? = 90° - ?, откуда следует, что А1ЕК = 90°.


  1   2



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации