Теория о бесконечности простых чисел-близнецов

скачать (1199.8 kb.)

  1   2   3   4   5   6   7
Боги создают Законы, люди – теории.
Теория о бесконечности простых чисел-близнецов.
Простое число- это целое положительное число больше единицы, которое не делится без остатка ни на одно другое целое положительное число, кроме единицы и самого себя.

Все остальные числа составные. Можно ещё назвать их сложными, так как первые у нас называются простые.

Простые числа-близнецы, это числа, находящиеся на расстоянии друг от друга в 2 единицы.

Простое число имеет в себе функцию F1:

F1 = Q1 : Q1 + Q1 : 1. (Q1 – простое число).

Сложное число имеет в себе две функции – F1 и F2:

F2 = Q2 : ( 1 + 1.. ). (Q2 - сложное число).

Значит: Q1 = F1, а Q2 = F1 + F2. Независима может быть функция F1. F2 – только в паре с первой функцией. Если бы на определённом этапе роста всех чисел, исчезло простое число, то, осталась бы одна функция. И не F2, и не F1, а F3:

F3 = Q3 : Q3…..1. (Q3 – безликое число. Сложное же есть там, где есть простое, то есть функция простого.)

Как видим, по нашим понятиям, которые есть у нас теперь, сложное не может быть без наличия простого. Такие доводы, которые здесь приводятся, скорее всего, философские. Теперь мы имеем и другие.

2200 лет тому назад Евклид, доказал существование бесконечного множества простых чисел. Его рассуждение можно уложить в одну фразу: если бы имелось лишь конечное число простых, то можно было бы их перемножить и, прибавив единицу, получить число, которое не делится ни на одно простое, что невозможно. В XVIII веке Эйлер доказал более сильное утверждение, а именно что ряд, составленный из величин, обратных простым, расходится, т.е. его частичные суммы  становятся с ростом количества слагаемых больше любого заданного числа. В его доказательстве была использована функция


?(s) = 1 + 

1

2s

 + 

1

3s

 + ...,


То, что простых чисел бесконечно много, ещё говорит и то, что мы можем высчитать их количество на определённой цифровой дали. Джоунз, Лэл и Бландон приводят данные о действительном количестве простых чисел и простых чисел-близнецов в этом и в некоторых других интервалах той же длины около больших степеней десяти. Видно, что реальные значения очень хорошо согласуются с ожидаемым результатом.


Интервал [n, n + 150 000]

Число простых

Число простых-близнецов

ожидаемое

фактическое

ожидаемое

фактическое

n = 100 000 000

8142

8154

584

604

n = 1 000 000 000

7238

7242

461

466

n = 10 000 000 000

6514

6511

374

389

n = 100 000 000 000

5922

5974

309

276

n = 1 000 000 000 000

5429

5433

259

276

n = 10 000 000 000 000

5011

5065

211

208

n = 100 000 000 000 000

4653

4643

191

186

n = 1 000 000 000 000 000

4343

4251

166

161


Мы можем даже установить очень большое простое число:


p

число цифр в числе p

Год открытия

кто открыл

2127 – 1

39

1876

Люка

(2148 + 1)/17

44

1951

Феррье

114(2127 – 1) + 1
180(2127 – 1)2 + 1

41

79

1951

Миллер + Уиллер + EDSAC 1

2521 – 1
2607 – 1
21279 – 1
22203 – 1
22281 – 1

157

183

386

664

687

1952

Лемер + Робинсон + SWAC

23217 – 1

969

1957

Ризель + BESK

24253 – 1
24423 – 1

1281

1332

1961

Хурвитц + Селфридж + IBM 7090

29689 – 1
29941 – 1
211213 – 1

2917

2993

3376

1963

Гиллис + ILIAC 2

219937 – 1

6002

1971

Таккермэн + IBM 360


Бесконечность простых чисел для нас уже факт. Вернее, у нас есть доказательства, которым мы верим, что это так! Верно ли то же самое для чисел-близнецов? Эта задачу не смог решить и Эратосфен. Теперь, в наше время, "проблема близнецов" остается единственной не решенной задачей, которая пришла нам от Античности. Тот, кому удастся решить её, совершит величайший прорыв в теории простых чисел со времен Евклида.

Попробуем её решить! А вдруг.... Ход дальнейших рассуждений может порой казаться сумбурным и не слаженным, что вполне допускает появление мелких ошибок. Но самое главное это итог! Самое главное это выводы сделанные в итоге, а не по ходу рассуждений.

Как мы знаем, система чисел вообще, это система. Она бесконечна вдаль и бесконечна внутрь. Вся эта система покоится на первичном принципе:

Q0 +1 = Q1.

Она не меняется во всей системе чисел. То что эта система бесконечна, нам любезно доказали те два ангела, которые взялись делить зёрнышко риса и Луну. Они так и продолжают делить их, и у никого нет шансов первым закончить деление.

Вся эта система чисел, делится и на простые числа и сложные. Все они бесконечны. Однако в этой системе (простых и сложных), есть пары простых чисел-близнецов. Справедливости ради отметим, что пары есть и у сложных, среди нечётных. Сложных больше, и поэтому нас, их пары не беспокоят. Мы обеспокоены жизнью простых чисел-близнецов.

А есть ли своя система в образовании простых и сложных, и есть ли у них своя первичная основа, которая даёт жизнь вообще простым и сложным? По логике, если мы можем с великой точностью высчитать их количество на определённом этапе, то и должна быть система. Без наличия таковой, мы бы не смогли строить такие точные, на зависть синоптикам, прогнозы.

Все простые числа, это нечётные числа. Нечётные числа это – 1,3,5,7,9,11,13,...?. Нечётные числа не могут делиться без остатка на чётные. Возьмём начало их. 1 – подходит для всех. 3 – уже нет, и так далее.

Начинаем строить первичный принцип-систему построения простых чисел(Система 3):


21

 

27

 

23

25

 


Как видим (пока видим!), каждое третье число, есть сложное – так как оно делится на три. И по этому видим что возможны только пары близнецы, но не тройняшки, и т.д.. И цифры между 21 и 27, реальные кандидаты в простые числа и в пару. Если бы была только такая система, то все числа между верхними, были бы простыми и парами одновременно.

Далее, у нас выстраивается новая система (Система 5):


25

 

35

 

27

29

31

33

 


Как видим, она уже корректирует первичную Систему 3, и 25 переводит в разряд сложных. Первая же, в свою очередь корректирует вторую, и 27 во второй переводит в разряд сложных.

Идём ещё далее (Система 7):


35

 

49

 

37

39

41

43

45

47

 


Которая также осуществляет свою корректировку. Система 9, то есть нахождение чисел делящихся на 9, можно сказать, что копирует Систему 3, и поэтому Системы с номерами сложных, не участвуют в построении.

Система 11, также корректирует Систему 3, но уже только каждую четвёртую единицу Системы 3. Система 13 уже в свою очередь каждую пятую единицу Системы 3. Если мы говорим что каждую пятую, то это означает то что это максимум возможности.

Как видим, первичной системой в образовании простых и сложных среди нечётных является Система 3:


21

 

27

 

23

25

 


Какой же мизерный шанс у оставшихся двух потенциальных кандидатов в простые числа, стать простыми! И тем более остаться парой!

Теперь мы Систему 3, удлиним до 4 её членов ( Х – постоянные сложные, такие как 21,27):


Х







Х







Х







Х







Х


Теперь заполним пустующие клетки возможными вариантами:
- сложное число. – простое число.


Х







Х







Х







Х







Х



Как видим, есть только четыре варианта для заполнения пустот. Какое же заманчивое наваждение появляется здесь провести аналогию с 4 буквами ДНК! Так вот, если бы здесь работал принцип теории вероятности со случайным появлением вариантов, то у каждой пары был бы реальный шанс достойно отстаивать свои 25%. У нас же как мы знаем не так. Значит, что-то корректирует нашу теорию вероятности. Кажется, мы уже ответили на этот вопрос, говоря о Системе 5, Системе 7,...?.
  1   2   3   4   5   6   7



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации