Закономерности распространения загрязняющих веществ в атмосфере

скачать (10359.8 kb.)

1   2   3   4   5   6   7   8   9   ...   12

Введение



Проблемы атмосферных загрязнений стали особо актуальными с середины 20 века в связи с ростом промышленного потенциала и транспорта. В частности, широко обсуждаются вопросы парникового эффекта, выбросов вредных веществ и т.д. Эти проблемы также обсуждаются на правительственном уровне, подтверждением чего является подписание Киотского протокола.

Проблемы атмосферных загрязнений затронули и курортные города, одним из которых является Кисловодск. В связи с тем, что промышленные предприятия вынесены за городскую черту, основным источником загрязнений здесь является автомобильный (преимущественно) и железнодорожный транспорт [1].

Физическая сторона рассматриваемой проблемы связана с анализом эмиссии распространения и поглощения загрязняющих веществ. Большая теоретическая работа в этом направлении была проведена Берляндом. В его монографии [3] построены основные модели распространения загрязняющих веществ от точечных, линейных и площадных источников как непрерывного, так и мгновенного действия. Работы по распространению загрязнений также проводятся и в Ставропольском госуниверситете [17], [24].

Однако построенные указанными исследователями модели имеют общий характер и требуют уточнения применительно к конкретным условиям. Кроме того, возникает необходимость апробации данных моделей на основе известных данных экологических и метеорологических наблюдений в г. Кисловодск.

Целью дипломной работы является численное моделирование и статистический анализ динамики загрязненности атмосферы в г. Кисловодск при наличии линейного источника загрязнения.

Задачами дипломной работы являются:

В соответствии с перечисленными целью и задачами исследования предложена следующая структура дипломной работы.

Первая глава работы носит теоретический характер и посвящена физическому анализу эмиссии и распространения загрязняющих веществ в атмосфере. Особое внимание уделено линейным источникам загрязнения. Рассмотрено влияние на распространение атмосферных загрязнений ветра, влажности, количества выпавших осадков, температуры воздуха, атмосферного давления. Также рассмотрено выведение атмосферных примесей за счет осадков сухого выпадения. Кроме того, рассмотрены основные виды загрязнений, их количество и состав. В конце первой главы уточнена постановка задач исследования.

Вторая глава носит практический характер и посвящена уточнению гауссовой модели распространения примеси от линейного источника загрязнения и численному исследованию этой модели. Кроме того, здесь приведены результаты статистического анализа динамики загрязнения воздушной среды в «верхней части» города и в центре города за период с 2001 по 2006 гг.

эмиссия загрязняющий атмосфера циркуляция

Глава I. Физическое описание распространения атмосферных примесей

.1 Общие сведения о загрязнении атмосферы городов автотранспортом (линейный источник загрязнения)



Источники загрязнения различаются по мощности выбросов (мощные, крупные и мелкие), по высоте выбросов (низкие, средние, высокие), по температуре отходящих газов (нагретые, холодные).[13]

Под низкими источниками понимают такие, в которых выброс осуществляется на высоте ниже 50 метров, под высокими - выше 50 метров; нагретыми условно называют выбросы, температура которых выше 50є С, при более низкой температуре выброс считается холодным.

Источники загрязнения атмосферы классифицируются:

по назначению

а) Технологические, содержащие хвостовые газы после улавливания на установках продувки аппаратов, воздухозаборников и.т.д. Для них характерны высокие концентрации вредных веществ и малые объемы удаляемого воздуха.

б) Вентиляционные - местные отсосы от оборудования и обще обменная вытяжка.

по месторасположению.

а) Незатененные (высокие) потоки. К ним относят высокие трубы и точечные источники, удаляющие загрязнение на высоту, превышающую высоту здания в 2,5 раза.

б) Затененные (низкие), расположенные на высоте в 2,5 раза меньше высоты здания.

в) Наземные, находящиеся вблизи земной поверхности. К ним относятся, открыто расположенное технологическое оборудование, колодцы производственной канализации, промывные токсичные вещества, разбросанные отходы производства.

по геометрической форме

а) Точечные - трубы, шахты, аэрационные фонари и.т.д.

б) Линейные - близко расположенные вытяжные шкафы и факелы.

в) Площадные - промплощадки, города, поля с внесенными ядохимикатами.

по режиму работы.

а) Непрерывного или периодического действия.

б) Залповые и мгновенные. В случае залповых выбросов за короткий промежуток времени в атмосферу поступают объёмы выбросов с большой концентрацией загрязняющих веществ. Залповые выбросы производятся при авариях, при сжигании быстрогорящих отходов на площадках утилизации.

При мгновенных выбросах загрязняющие вещества выделяются за доли секунд и иногда на достаточно высокие расстояния. Они происходят при взрывных работах и аварийных ситуациях.[13]

На распределение загрязняющих веществ в атмосфере города влияют множество факторов. При постоянных параметрах выбросов уровень загрязнения атмосферы существенно зависит от климатических условий, характерных для данной территории, к ним относятся: направление и скорость ветра, условия переноса и распространения примесей, интенсивность солнечной радиации, количество и продолжительность атмосферных осадков.[16]

Влияние метеоусловий вблизи источника загрязнения проявляется по-разному. При нагретых или холодных выбросах из высоких и низких труб концентрации примесей в приземном слое атмосферы под факелом дымовых и вентиляционных труб на разных расстояниях от источника распределяются следующим образом: вблизи источника при отсутствии низких и неорганизованных выбросов концентрация примесей мала, она увеличивается и достигает максимума на некотором расстоянии от трубы. Максимум и характер концентраций с расстоянием зависит от мощности выброса, высоты трубы, температуры отходящих газов и скорости выбросов, а также от метеоусловий. Чем выше источник выброса, тем больше рассеивается выброс, прежде чем он достигнет подстилающей поверхности.[18] Наибольшие значения концентраций достигается на расстоянии 10-40м высот труб. На промышленных площадках загрязнение приземного слоя воздуха может быть повышенным за счет неорганизованных выбросов. Рассеивающая способность атмосферы зависит от вертикального распределения температуры и скорости ветра. Если температура с высотой падает, то создаются условия для постоянного интенсивного турбулентного обмена.[14]. Если температура с высотой растет (температурная инверсия), то рассеивание примесей ослабевает. В случае мощных и длительных приземных инверсиях при низких и неорганизованных выбросах приземные концентрации могут существенно возрастать. В случае приподнятых инверсий приземные концентрации зависят от высоты расположения источника загрязнения по отношению к нижней границе температурной инверсии. Если источник расположен выше слоя приземной инверсии, то примесь к земной поверхности поступает в незначительных количествах. Если источник распложен ниже, то основная часть примесей концентрируется вблизи поверхности земли. Скорость ветра способствует переносу и рассеиванию примесей, так как с усилением ветра возрастает интенсивность перемешивания воздушных слоёв.[17] При слабом ветре в районах высоких источников концентрации примесей количество загрязняющих веществ уменьшается за счет увеличения подъёма факела и перемещению примесей вверх. Подъём примесей особенно значителен при нагретых выбросах. При сильном ветре начальный объём примесей уменьшается, но возрастает скорость переноса примесей на значительные расстояния[23].

Максимальные концентрации обычно наблюдаются при опасной скорости ветра, которая зависит от параметров выбросов.[14] Для мощных источников с большим перегревом дымовых газов, например для ТЭС, опасная скорость 5-7 м/с [22]. Для источников со сравнительно малым объёмом выбросов и низкой температурой отходящих газов опасная скорость составляет 1-2 м/с. Неустойчивое направление ветра способствует усилению рассеивания примесей по горизонтали и, концентрируясь у земли уменьшаются. Солнечная радиация способствует протеканию фотохимических реакций и формированию различных вторичных продуктов загрязнения, которые часто обладают более опасными токсическими свойствами, чем исходные вещества. В результате фотохимического эффекта в ясные солнечные дни в атмосфере формируется фотохимический смог.

При туманах концентрация примесей может сильно увеличиваться. С туманами связаны, смоги, при которых в течение длительного времени удерживаются высокие концентрации вредных примесей [21].

На распространение примесей влияют упорядоченные вертикальные движения, обусловленные неоднородностью подстилающей поверхности. В условиях пересеченной местности на наветренных склонах возникают восходящие движения, а на подветренных склонах нисходящие; на водоёмах летом - нисходящие, а в прибрежных районах восходящие потоки. При нисходящих потоках приземные концентрации увеличиваются, а при восходящих приземные концентрации уменьшаются. В некоторых формах рельефа (например, котловинах) воздух застаивается, что приводит к накоплению загрязняющих веществ вблизи подстилающей поверхности, особенно низких и неорганизованных источников.

1   2   3   4   5   6   7   8   9   ...   12

Введение



Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации