Общие сведения о термодинамических системах

скачать (1231.8 kb.)

  1   2

Тема 1. Общие сведения о термодинамических системах


План

  1. Термодинамическая система с точки зрения системного анализа.

  2. Способы задания термодинамической системы и ее состояния.

  3. Физические ограничения термодинамической теории.



1. Процессы передачи, сохранения и превращения энергии носят всеобщий характер и протекают в любой физической системе. Любой вид энергии способен перейти в тепло, а в некоторых случаях возможен и обратный переход. По этой причине, раздел физики, объектом исследования которого являются тепловые (энергетические) процессы, занимает особое место в теории. В частности, сведения из термодинамики необходимо привлекать при изучении процессов намагничивания вещества, термоэлектричества, явлений упругости и вязкости и т.д.

Кроме того, термодинамические закономерности (особенно касается неравновесной термодинамики) могут успешно применяться далеко за пределами физики при наследовании биологических, общественных и экономических систем. В частности, все большее распространение (особенно на Западе) приобретает такое междисциплинарное направление как эконофизика. Основная идея эконофизики заключается в исследовании экологических систем и процессов методами теоретической физики (преимущественно, статистической физики и термодинамики).

Столь широкое применение термодинамического описания (особенно за пределами физики), по всей видимости, объясняется особенностями термодинамических систем.

Под системой, согласно Советскому энциклопедическому словарю, понимается множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность и единство.

В словаре Вебслера «система» определяется как совокупность объектов, объединенных некоторым взаимодействием или некоторой взаимной зависимостью.

Обычно помимо материальных систем (куда в том числе входят живые и социальные системы), которые представляют для нас интерес, еще рассматривают абстрактные системы.

В большинстве случаев материальные системы не являются обособленными от других систем (среды) и в общем случае обмениваются с ней веществом, энергией и информацией. Особенность термодинамического описания заключается в том, что именно оно позволяет проанализировать обмен термодинамической системы с окружающей средой всеми тремя составляющими.

Если обмен веществом и энергией понятен и хорошо известен из других разделов физики, то обмен информацией, как правило, присущ исключительно термодинамическим системам1, поскольку величину информации обычно связывают с величиной термодинамической энтропии2.

Охарактеризуем основные особенности термодинамических систем:

  1. Термодинамические системы являются системами большого числа частиц, взаимодействующих как друг с другом, так и с внешними полями. Заметим, что число частиц ограничено как сверху, так и снизу. Наличие нижней границы () связано с необходимостью установления в системе равновесного распределения по скоростям частиц и по координатам. Результаты компьютерного моделирования показывают, что такие распределения могут установиться и для систем гораздо меньшего числа частиц (порядка сотен и даже десятков). Однако в этом случае систему гораздо легче вывести из состояния равновесия, а время установления равновесного состояния будет бо’льшим.

Причина ограничения на сверху также связана с тем, что системы существенно больших масштабов, чем макроскопические (системы Мегамира, имеющих масштаб Вселенной или ее частей) не имеют равновесного состояния.

Таким образом, важной особенностью термодинамической системы является ее равновесность (равномерное распределение частиц, температуры, концентрации и других характеристик по объему, занимаемому системой).

  1. Для любой термодинамической системы существует состояние термодинамического равновесия, которое оно достигает с течением времени самопроизвольно при фиксированных внешних условиях. Сформулированное положение получило название нулевого начала термодинамики.

Это свойство является специфическим для всех термодинамических систем.

На практике для макроскопических систем под состоянием термодинамического равновесия будем понимать сохранение макроскопических параметров термодинамической системы с течением времени при отсутствии потоков любого типа: вещества, энергии (тепла), энтропии.

Состояние термодинамического равновесия обладает двумя важными свойствами:

2.1. В отличие от механического (статического) равновесия термодинамическое равновесие предполагает наличие теплового движения, т.е. является подвижным. Поэтому макроскопические параметры не фиксированы, а флуктуируют около средних значений. Флуктуациям также подвержены и потоки.

  1. Принцип термодинамической транзитивности: пусть имеется три динамических системы , , и их по очереди приводят в тепловой контакт. Если система А, приведенная в контакт с , не изменила своего теплового состояния, и если , приведенная в контакт с , не изменила своего теплового состояния, то и между и тоже будет тепловое равновесие.

Благодаря этому свойству может быть установлен общий параметр, характеризующий равновесие системы и не зависящий от места и способа его измерения – температуры. Принцип термодинамической транзитивности позволяет ввести меру термодинамического равновесия систем, которая называется температурой.

3.По отношению к термодинамическим системам выполняется так называемый принцип аддитивности. Согласно ему, все величины, описывающие термодинамические свойства систем могут принадлежать к одному классу аддитивности (аддитивные, неаддитивные).

Примером аддитивных величин являются числа частиц в системе , объем V, Энергия , полная энергия системы ?, теплоемкость С.

Примерами неаддитивных величин являются удельная энергия . Удельный объем V = V/N, температура и т.д.

  1. Термодинамические системы подчиняются первому, второму и третьему началу термодинамики.

Традиционно начала термодинамики считают основными аксиомами. Их принято приводить к формулировке математического аппарата макроскопической термодинамики.

Вообще, аксиоматическое построение физической теории осуществляется следующим образом:

  1. На основании обобщения большого числа опытных данных формируются основные исходные положения теории (аксиомы, постулаты, начала). При этом определяется не только условный язык, но и основной круг явлений описываемый при помощи данных изложений, их общие ограничения;

  2. Создается математический аппарат теории;

  3. Созданный аппарат применяется для исследования конкретных физических проблем, а получение результата проверяется экспериментально, что позволяет при необходимости корректировать систему исходных положений или ограничивать область их применения.

Для дальнейшего построения математического аппарата термодинамики нам необходимо рассмотреть способы описания термодинамических систем.
2. Задание состояния термодинамической системы во многом определяется тем, каким образом эта система выделяется из окружающей среды. Эта процедура неоднозначна и во многом зависит от требуемых задач исследований. В основном выделяют следующие виды систем:

  1. Адиабатическая изолированная система , которую выделяют с помощью адиабатических стенок, не допускающих переноса частиц и энергии. Возможен только механический контакт систем. При этом фиксируется объем системы, количество частиц , внешние поля – , энергия – (энергию всех частиц, находящихся в системе).

Легко видеть, что все фиксируемые параметры системы не являются сферическими для термодинамики.

  1. Система в термостате : система выделена с помощью теплопроводящих стенок, недопускающих потока частиц, но допускающих обмен энергией и механический контакт. В этом случае рассматривается не одна, а, как минимум, две термодинамические системы. Первая система является исследуемой, а вторая играет роль термометра. Последнюю принято называть термостатом Т. Единственным интересующим нас свойством термостата является знание его температуры , которая согласно условию термодинамического равновесия совпадает с температурой исследуемой системы: . (1.1)



Error: Reference source not found

  1. Система с воображаемыми стенками , мысленно выделяемая в некоторой “большой” равновесной термодинамической системе. В этом случае фиксируется объем , температура , внешние поля . Число частиц зафиксировать не удается. Однако вместо него вводится новый параметр , смысл которого рассмотрен далее.


Error: Reference source not found

  1. Система под поршнем . В этом случае система отделена от термостата теплопроводящими стенками, одна из которых подвижна. Вследствие этого давление в термостате передается системе. Таким образом, термостат по отношению к исследуемой системе играет роль не только термометра , но и манометра . В этом случае фиксируются температура , давление , внешние поля а и число частиц .

Возможны и иные способы выделения системы, но, как правило, ограничиваются указанными.
Error: Reference source not foundВсе перечисленные варианты совершенно эквивалентны, поскольку выбор способа описания системы не влияет на ее макроскопические характеристики системы. Заметим, что сказанное относится к равновесным системам.

Нечувствительность равновесного состояния термодинамической системы к выбору граничных условий может быть использована при введении ряда важных характеристик системы.

Так, энергия в адиабатически изолированной системе является заданным параметром, характеризующим сумму кинетической энергией частиц и энергии взаимодействия частиц друг с другом и внешними полями.

В случае системы в термостате энергия уже не является независимым термодинамическим параметром, а является функцией температуры , объема , числа частиц и внешних полей . В данном случае энергия уже не имеет столь простой интерпретации. Однако в силу инвариантности термодинамического описания эти величины должны совпадать:

. (1.2)

Введенная таким образом характеристика получила название внутренней энергии системы.

Из нулевого начала термодинамики следует, что задание всех параметров равновесной термодинамической системы полностью определяет ее макроскопическое состояние. Если по каким – либо причинам две системы с одинаковыми значениями выбранного набора параметров ведут себя различным образом, выбранный набор является неполным.

Очевидно, воздействие на термодинамическую систему осуществляется через стенки, фиксирующие определенные состояния системы. Из всех воздействий на систему нам будут интересны только бесконечно малые возмущения равновесной системы, которые приводят к бесконечно малым изменениям равновесных значений термодинамических параметров.

При этом реакции термодинамической системы на внешние воздействия разбивают на две группы: реакция системы по отношению к изменению ее механических параметров, с которой связывают понятие работы, и реакция системы на тепловые воздействия.

Работа термодинамической системы представляет собой работу в механическом понимании против внешних сил, поддерживающих определенные значения термодинамических параметров системы.

Положим для определенности, что система находится в термостате. Тогда она описывается параметрами . Обозначим группу параметров, которые могут меняться извне через ():

(1.3)

Тогда дифференциал для работы при бесконечно малом изменении :

(1.3’)

записывается на основании механической аналогии в виде:

(1.4)

В этом смысле величины можно назвать термодинамическими “координатами”, а величины – сопряженными к ним термодинамическими “силами”.

Традиционно считают величину , если работу совершает термодинамическая система и , если работа совершается над системой.

Рассмотрим в качестве примера работу, связанную с изменением объема системы:



или с изменением электрических



или магнитных полей

.

В общем виде работу под действием изменяющегося внешнего поля можно записать в виде:

.

Таким образом, реакция системы на изменение ее параметров сводится к заданию величин как параметров термодинамического состояния

, . (1.5)

Выражение (1.5) называется уравнением состояния термодинамической системы(термическими уравнениями состояния). Так, для однородной системы имеется одно уравнение состояния:

.

Очевидно, конечная работа перехода из состояния 1 в состояние 2 определяется из суммирования величин :

. (1.6)

Тепловые воздействия на систему осуществляется посредством сообщения ей некоторого количества тепла . Считается, что , если система получает тепло и , когда система отдает тепло.

Обычно нагреваемые и охлажденные системы связывают с изменением ее температуры и понятием теплоемкости С:

. (1.7)

Однако задание величины не имеет особого смысла, так как эта величина зависит не только от параметров состояния , но и от типа процесса. Известно , например, что теплоемкость при изотермическом процессе принимает значение , а при адиабатном процессе она равна нулю.

Таким образом, для характеристики реакции термодинамической системы по отношению к нагреванию необходимо наложить какие-либо дополнительные условия на теплоемкость. Наиболее очевидным является фиксация всех параметров системы кроме температуры (в нашем случае это и ):

, (1.8)

где - удельная теплоемкость термодинамической системы. Уравнение (1.8) получило название калорического уравнения состояния.

Состояние термодинамической системы считается полностью заданным, если заданы параметры системы, уравнение состояния (1.5) и калорическое уравнение состояния (1.8)

  1   2



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации