Исследование нелинейных цепей постоянного тока

скачать (6983.6 kb.)

  1   2
ЛАБОРАТОРНАЯ РАБОТА №3

Исследование нелинейных цепей постоянного тока

ВВЕДЕНИЕ
ЦЕЛЬ РАБОТЫ: Экспериментально определить и построить вольтамперные характеристики нелинейных резистивных элементов; проверить достоверность графического метода расчёта нелинейных электрических цепей.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ
Зависимость тока, протекающего через резистивный элемент электрической цепи от напряжения, приложенного к его выходным зажимам, называется вольтамперной характеристикой (ВАХ):

Иногда такой зависимостью служит:

Если график ВАХ является прямой линией, то такой элемент называется линейным элементом (рис. 1).

На примере рис. 1 можно графически представить сущность понятия о линейном элементе. Какое бы напряжение ни было приложено к его выходным зажимам ( и ) ток всегда будет таким ( или соответственно), что отношение

есть постоянная величина, не зависящая от и ( и – масштабы осей напряжения и тока). Учитывая, что для такого резистивного элемента справедлив закон Ома:

Получим:




То есть для линейного резистивного элемента его параметр (сопротивление) не зависит от режима работы электрической цепи, в которую он включён.

Если ВАХ не является прямой линией, то такой резистивный элемент будет нелинейным резистивным элементом (рис. 2). Нелинейность зависимости связана с тем, что при изменении ( и ) и ( и соответственно) изменяется их отношение.
или
Т.е. сопротивление нелинейного резистивного элемента не является постоянной величиной и изменяется с изменением и .

В общем случае нелинейный элемент нельзя характеризовать каким-либо постоянным сопротивлением и его характеристикой служит ВАХ, задаваемая таблично, графически (рис. 2) или аналитически.

По аналогии с резистивным элементом можно упомянуть о линейных и нелинейных индуктивном (рис. 3) и ёмкостном (рис. 4) элементах электрических схем, в зависимости от того зависят или не зависят их параметры (индуктивность) и (ёмкость) от режима работы элементов.

Разнообразные электронные, ионные, полупроводниковые и магнитные приборы, нашедшие широкое применение в радиотехнике, автоматике, связи, электротехнике обладают свойствами нелинейных элементов. Это вынуждает разрабатывать методы расчёта нелинейных цепей. Цепь является нелинейной, если один или несколько элементов этой цепи нелинейные.

К нелинейным электрическим цепям применимы основные законы электрических цепей, т. е. общий закон Ома и законы Кирхгофа (для цепей переменного тока эти законы справедливы только в мгновенной форме записи). В тоже время расчёт нелинейных электрических цепей значительно труднее, чем линейных цепей. Объясняется это тем, что кроме токов и напряжений, подлежащих обычно определению, неизвестными являются зависящие от них сопротивления нелинейных элементов.

Для расчёта нелинейных электрических цепей применяются различные методы расчёта: аналитические, графо – аналитические, графические, которые выбираются в зависимости от способа представления ВАХ, сложности схемы, формы питающего напряжения. Наибольшее распространение получил метод линеаризации ВАХ элементов. Сущность метода сводится к замене нелинейного элемента линейным, имеющим постоянное сопротивление. Преобразуя таким образом все нелинейные элементы, нелинейную цепь сводят к линейной. Последнюю рассчитывают известными методами.

В самом простейшем случае (рис. 5), если , то напряжение на зажимах нелинейного элемента и ток, протекающий через, него также будут постоянными. В этом случае нелинейный элемент можно заменить линейным элементом (рис. 6) с сопротивлением - статическое сопротивление нелинейного элемента в точке его ВАХ (рис. 7), определяемое, как отношение напряжения на элементе к току через него:

Статическое сопротивление можно определить и графически: как тангенс угла между прямой, проведённой из начала координат через точку на ВАХ и осью токов (рис. 7):


Точка на ВАХ, одновременно отвечающая значениям напряжения и на нелинейном элементе, называется рабочей точкой.

Пусть рабочая точка на ВАХ нелинейного элемента изменяет своё положение под действием переменного напряжения, например, колеблется во времени вокруг некоторого среднего положения (рис. 8). В этом случае изменения тока и напряжения нельзя сопоставить с помощью конкретного параметра , поскольку эта величина также изменяется. В то же время, если изменения и невелики, то можно ввести понятие о дифференциальном сопротивлении . Под ним понимают отношение бесконечно малого приращения напряжения к соответствующему приращению тока:

Отсюда следует, что, строго говоря, дифференциальное сопротивление характеризует нелинейный элемент в точке ВАХ, для которой оно определяется.

Тем не менее, поскольку для рассматриваемого случая (рис. 8) колебания напряжения ( или ) невелики, с достаточной для практики точностью можно считать, что каждая точка участка ВАХ от до характеризуется постоянной величиной :


Дифференциальное сопротивление можно определить и графически, как тангенс угла между касательной в рабочей точке ВАХ и осью токов (рис. 8) в направлении от оси токов до касательной по часовой стрелке:

Вернёмся к рассматриваемому случаю. Поскольку ВАХ на участке заменяется прямой линией, то напряжение можно представить в виде суммы двух слагаемых (рис. 8):
(1)
Учитывая, что со временем положение рабочей точки изменяется в пределах к соотношению (1) необходимо добавить слагаемое , которое определяет некоторый источник ЭДС переменного тока с амплитудным значением или :

(2)
Соотношение (2) определяет схему замещения нелинейного резистивного элемента (рис. 9), в которой он заменяется линейным резистивным элементом с сопротивлением и двумя источниками ЭДС.

Рассмотренные приёмы называются линеаризацией ВАХ нелинейного элемента. Эти приёмы позволяют, при указанных условиях, свести нелинейную цепь к линейной. В случае широкого диапазона изменения рабочей точки ВАХ или повышенных требований к точности расчёта используют аналитические или графические методы.

Рассмотрим метод преобразований и расчёта цепей с нелинейными элементами, основанный на предварительной замене электрической цепи цепью, имеющей эквивалентную ВАХ и последующего перехода в процессе расчёта к заданной электрической цепи. Этот метод является графическим методом расчёта.

Положим, что нелинейные элементы соединены последовательно (рис. 10) и имеют известные ВАХ (рис. 11). Если задан ток в такой цепи (например, на рис. 11), то, т.к. при последовательном соединении элементов ток в каждом элементе будет одинаковым и равным , падение напряжения на каждом элементе ( и ) находится непосредственно по ВАХ этого элемента без каких – либо дополнительных построений (рис. 11).

Если же задано общее напряжение , то без дополнительных построений определить в таком соединении элементов (рис. 10) ток и падения напряжения достаточно сложно. Для этого необходимо построить эквивалентную ВАХ:

Построение эквивалентной ВАХ основано на следующих особенностях последовательного соединения элементов (рис. 10):

- ток в такой цепи, протекающий через каждый элемент один и тот же;

- общее напряжение, приложенное ко всей цепи, равно сумме падений напряжений и на каждом элементе:

Из сказанного следует, что при любом произвольно взятом токе, соответствующая точка эквивалентной ВАХ находится суммированием абсцисс точек исходных ВАХ и , определённых при том же токе.

Данное правило позволяет следующим образом построить эквивалентную ВАХ (рис. 12). Задаются несколькими произвольно взятыми значениями тока в цепи ( по оси ординат на рис.12); по исходным ВАХ , находят соответствующие каждому току напряжения и . Суммированием и определяют абсциссы точек эквивалентной ВАХ. Их ординаты заданы произвольно выбранными точками . Соединяя плавной линией полученные точки , получают график эквивалентной ВАХ .

Теперь зная, например, что , по эквивалентной ВАХ определяют ток , а затем по исходным ВАХ и находят падение напряжения на каждом элементе , . Т.о. производится графический расчёт параметров режима работы цепи из последовательно соединённых нелинейных резистивных элементов.

В случае если один из последовательно соединённых резистивных элементов является линейным (рис. 13), графический расчёт производят методом нагрузочной характеристики.

Пусть дана схема (рис. 13), в которой , . Для неё согласно 2-го закона Кирхгофа можно записать:

или
(3)

При постоянных и соотношение (3) есть уравнение первой степени , т.е. между и в этом случае существует линейная зависимость, которая называется нагрузочной характеристикой. Нагрузочную характеристику строят по двум точкам, которые определяют из условий:

  1. при , получаем из (3) (первая точка).

  2. при имеем (вторая точка).

Проведя через эти точки прямую линию, получаем нагрузочную характеристику (рис. 14). Ток во всех элементах при последовательном соединении (рис. 13) имеет одинаковое значение, которое должно удовлетворять как нагрузочной характеристике , так и ВАХ нелинейного элемента . Следовательно, точка их пересечения (т. на рис. 14) определяет режим работы цепи и является рабочей точкой. С помощью точки определяют параметры режима работы цепи : ; .

Положим теперь, что нелинейные резистивные элементы включены параллельно (рис. 15) и имеют известные ВАХ (рис. 16). Если напряжение в такой цепи (например, на рис. 16) известно, то, т. к. напряжения на всех ветвях параллельного соединения одинаковы (и равны ), токи через нелинейные элементы ( и ) находятся непосредственно по соответствующим ВАХ без каких – либо дополнительных построений (рис. 16).

Если же задан общий ток , то без дополнительных построений определить в таком соединении элементов (рис. 15) напряжение и токи в ветвях и достаточно сложно. Для этого необходимо построить эквивалентную ВАХ:


Построение эквивалентной ВАХ основано на следующих особенностях параллельного соединения элементов (рис. 15):
Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации