Химические реакции и системы

скачать (1418.1 kb.)

1   2

2. Химические реакции
Химические реакции (химические явления) – это процессы, в результате которых одни вещества превращаются в другие.

Признаками осуществления химических реакций являются:

– изменение цвета;

– выделение газа;

– выпадение или растворение осадка;

– появление или исчезновение запаха;

– выделение тепла и света.

Перечисленные признаки реакций можно обнаружить непосредственно в ходе визуального наблюдения. Существуют и другие признаки осуществления реакций, которые нельзя заметить визуально, но можно обнаружить с помощью приборов.

Некоторые реакции можно осуществить только при определенных условиях: при нагревании, при освещении, при повышенном давлении, при наличии определенных веществ, способствующих осуществлению реакции – катализаторов.

В ходе химических реакций соблюдается закон сохранения массы: масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате реакции.

Стехиометрия реакции – соотношение между количествами вступающих в реакцию реагентов и образующихся в результате реакции продуктов реакции.

Если а моль вещества А реагирует с b моль вещества В, а в результате реакции образуется х моль вещества Х и z моль вещества Z, то уравнение
a A + b B = x X + z Z
называется химическим уравнением данной реакции, а числа a, b, x, z называются стехиометрическими коэффициентами.
2.2 Классификация реакций
В зависимости от разных критериев химические реакции классифицируют на несколько типов. Так, по количеству и составу реагирующих веществ и продуктов в неорганической химии различают реакции:

соединения – реакции, в ходе которых из нескольких простых или сложных веществ образуется сложное. Например:
СаО + Н2О = Са(ОН)2
разложения – реакции, в ходе которых в результате взаимодействия простого и сложного вещества образуется несколько других простых и сложных. Например:
СаСО3 = СаО + СО2?
замещения – реакции, в ходе которых в результате взаимодействия простого и сложного вещества образуется другое простое и другое сложное вещество. Например:
2Al = 3CuCl2 = 2AlCl3 + 3Cu
обмена – реакции, в ходе которых в результате взаимодействия двух сложных веществ образуется два других сложных вещества. Например:

NaCl + AgNO3 = AgCl? + NaNO3
По тепловому эффекту реакции могут быть экзо- и эндотермическими.

Тепловой эффект химической реакции – количество теплоты, которое выделяется или поглощается в результате реакций между определенными количествами реагентов.

Экзотермические реакции – реакции, в ходе которых происходит выделение теплоты, эндотермические реакции осуществляются с поглощением теплоты.

По признаку изменения степеней окисления реакции могут относиться к окислительно-восстановительным, а могут не являться таковыми; по признаку обратимости – обратимыми и необратимыми.

В ходе огромного множества химических реакций происходит переход электронов от одних веществ к другим. Такие реакции называют окислительно-восстановительными. Формальным признаком таких реакций является изменение степеней окисления элементов.

Степень окисления соответствует заряду, который возник бы на аотме даннго элемента в химическом соединении, если предположить, что все электронные пары, за счет которых этот атом связан с другими атомами, полностью сместились к атомам элементов с большей электроотрицательностью.

Степень окисления элемента в простом веществе равна нулю. В сложном соединении алгебраическая сумма степеней окисления каждого из атомов равна нулю, в случае сложного иона – заряду иона.

Постоянные степени окисления в сложных веществах имеют следующие элементы:

+1 все элементы IA группы (Li, Na, K, Rb, Cs), почти всегда Ag

+2 все элементы II группы (кроме ртути)

+3 алюминий

-1 фтор

-2 кислород (за исключением: фторидов кислорода OF2 и O2F2, в которых его степень окисления положительна; пероксидов, в которых она равна -1 (Н2О2); супероксидов КО2 и т.п.).

Водород в бинарных4 соединениях с неметаллами имеет степень окисления +1, а в соединениях с металлами -1.

Окислительно-восстановительные реакции (ОВР) – реакции, в ходе которых изменяются степени окисления элементов вследствие перехода электронов от восстановителя к окислителю.

Окислитель – вещество, молекулы или ионы которого принимают электроны.

Восстановитель – вещество, молекулы или ионы которого отдают электроны.

Окислителем и восстановителем могут также называть элементы, атомы которых отдают или принимают электроны. Если элемент является окислителем – его степень окисления понижается; если элемент является восстановителем – его степень окисления повышается.

Окисление – процесс отдачи электронов атомом, молекулой или ионом, степень окисления элемента повышается.

Восстановление – процесс приема электронов атомом, молекулой или ионом, степень окисления элемента понижается.

Классификация окислительно-восстановительных реакций.

Межмолекулярные окислительно-восстановительные реакции – реакции, в которых окислителем и восстановителем являются разные вещества.

Внутримолекулярные окислительно-восстановительные реакции – реакции, в которых элемент-окислитель и элемент-восстановитель находятся в одном веществе, но окислитель и восстановитель разные элементы.

Диспропорционирование – реакция, в которой окислителем и восстановителем является один и тот же элемент, в одной и той же степени окисления.

Конпропорционирование – реакция, в которой окислителем и восстановителем является один и то же элемент в разных степенях окисления.

Окислители и восстановители

Среди простых веществ окислительные свойства характерны для типичных неметаллов (F2, Cl2, Br2, I2, O2, O3,). Галогены, выступая в роли окислителей, приобретают степень окисления -1, причем от фтора к иоду окислительные свойства ослабевают. Кислород, восстанавливаясь, приобретает степень окисления -2 (Н2О или ОНˉ).

Сложные вещества, используемые в качестве окислителей, очень часто содержат элементы в высшей степени окисления.

Среди кислородсодержащих кислот и их солей к наиболее важным окислителям относятся концентрированная серная кислота, азотная кислота и нитраты, перманганаты, хроматы и дихроматы, кислородсодержащие кислоты галогенов и их соли.

Среди простых веществ к типичным восстановителям принадлежат активные металлы (щелочные и щелочноземельные, алюминий, цинк, железо и др.), а также некоторые неметаллы, такие как водород, углерод (в виде угля или кокса), фосфор, кремний. При этом в кислой среде металлы, которые образуют амфотерные гидроксиды (например, цинк, алюминий, олово), входят в состав анионов и гидроксокомплексов. Углерод чаще всего окисляется до монооксида или диоксида; фосфор, при действии сильных окислителей, окисляется до ортофосфорной кислоты.

В бескислородных кислотах и их солях носителями восстановительной функции являются анионы, которые, окисляясь, обычно образуют простые вещества. В ряду галогенид-ионов восстановительные свойства усиливаются от Clˉ к Iˉ.

Гидриды щелочных и щелочноземельных металлов, содержащие ион Нˉ, проявляют восстановительные свойства, легко окисляясь до свободного водорода.

Металлы в промежуточной степени окисления, взаимодействуя с окислителями, способны повышать свою степень окисления.

Окислительно-восстановительная двойственность

Окислительно-восстановительная двойственность – способность одного и того же вещества, в зависимости от реагентов и от условий проведения реакции, выступать как в роли окислителя, так и в роли восстановителя. В таких веществах содержится элемент в промежуточной степени окисления.

Окислительно-восстановительная двойственность характерна для простых веществ – неметаллов. Например, фосфор по отношению к металлам выступает в роли окислителя. В то же время фосфор выступает в роли восстановителя по отношению к фтору, кислороду или хлору.

Азотная кислота за счет азота в высшей степени окисления +5 может выступать только в роли окислителя. В аммиаке азот в низшей степени окисления -3, и, поэтому, за счет азота, аммиак может выступать только в роли восстановителя. А в азотистой кислоте HNO3 азот находится в промежуточной степени окисления =3. Азотистая кислота окисляется кислородом, и в этом случае азот – восстановитель. Но в реакции с сильным восстановителем, например, с иодоводородной кислотой, азотистая кислота – окислитель.
2.3 Скорость химических реакций. Катализ
Скорость и механизмы химических реакций изучает раздел химии, который называется химической кинетикой.

Скорость химической реакции определяется изменением количества одного из реагентов или продуктов реакции за единицу времени в единице объема (для гомогенных систем) или на единице поверхности (для гетерогенных систем).

Гомогенной является система, состоящая из одной фазы, например, смесь газов, истинный раствор и т.д. Гетерогенная система состоит из нескольких фаз, разграниченных между собой поверхностями раздела. Это любые системы, в которых участвуют реагенты в твердом состоянии, несмешивающиеся жидкости и т.д.

Скорость химической реакции, как правило, выражается в моль/(л·с) для гомогенных систем и в моль/(м2·с) для гетерогенных систем.

Так как скорость реакции изменяется со временем (по мере расходования реагентов скорость реакции обычно снижается), то мы можем вычислить только среднюю скорость реакции в определенном временном интервале ??.

Зависимость скорости реакции от концентрации реагирующих веществ

С увеличением концентрации реагирующих веществ скорость реакции возрастает, потому что с увеличением концентрации реагентов возрастает число реагирующих веществ в единице объема и, следовательно, возникает больше столкновений между такими частицами.

Количественно зависимость между скоростью реакции и концентрацией определяется законом действующих масс:

При постоянной температуре скорость реакции пропорциональна произведению концентраций реагирующих веществ. (Это закон действующих масс в кинетической форме)

Константа скорости реакции – это коэффициент пропорциональности в кинетическом уравнении, численно равный скорости данной реакции при концентрациях реагирующих веществ, равных 1 моль/л.

Константа скорости зависит от тех же факторов, что и скорость химической реакции, но не зависит от концентрации реагирующих веществ.

В гетерогенных реакциях, происходящих на поверхности раздела фаз, концентрация твердого вещества. Реагирующего с газом или с раствором, остается постоянной, поэтому в кинетическое уравнение не входит.

Гетерогенные реакции идут на поверхности раздела фаз. Поэтому на скорость таких реакций площадь реакционной поверхности. Скорость гетерогенной реакции зависит и от скорости подвода реагента в зону реакции.

Зависимость скорости реакции от температуры. Правило Вант-Гоффа

Химическая реакция происходит в результате столкновения частиц реагирующих веществ (молекул, ионов, радикалов и т.д.). но не всякое столкновение частиц приводит к перегруппировке атомов. Если при столкновении частицы не обладают достаточной энергией, то столкновение будет «неэффективным», упругим, оно подобно столкновению бильярдных шаров. Если же энергия столкнувшихся частиц будет достаточно высока, то столкновение будет «эффективным».

При повышении температуры частицы реагирующих веществ получают большую энергию, следовательно, возрастает доля частиц, имеющих энергию равную или большую для того, чтобы столкновение было эффективным.

Количественно влияние температуры на скорость гомогенных реакций определяется правилом Вант-Гоффа:

При повышении температуры на каждые 10 °С скорость реакции увеличивается в среднем в 2–4 раза.

Использование правила Вант-Гоффа имеет ограничения: оно выполняется при температурах, близких к стандартным условиям, а сам температурный коэффициент может изменяться в зависимости от температуры.
2.4 Катализ
Многие химические процессы идут только при наличии особых веществ – катализаторов.

Катализ – это изменение скорости реакции под действием катализаторов.

Катализаторы – вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся. Катализаторы восстанавливают свой химический состав после осуществления реакции.

Существуют также вещества, которые могут замедлять реакции. Они называются ингибиторами. Ингибиторы или блокируют катализатор, или дезактивируют активные частицы реагентов и промежуточных продуктов.

Катализ может быть гомогенным и гетерогенным. В случае гомогенного катализа, катализатор находится в одной фазе с реагирующими веществами, в случае гетерогенного катализа, катализатор образует самостоятельную фазу и реакция идет на его поверхности.

Гетерогенный катализ может быть усилен или ослаблен действиями промоторов или каталитических ядов.

Промотры – вещества, которые сами не являются катализаторами, но повышают активность катализатора данной реакции.

Каталитические яды – вещества, снижающие активность катализатора. Попадая на поверхность катализатора, они отравляют его, снижают эффективность его работы.

Особую роль играют катализаторы в живых организмах. Их называют ферментами.

Ферменты – вещества, катализирующие биохимические реакции в организмах. Ферменты являются полимерами (белками) или комплексами полимеров с низкомолекулярными соединениями. Механизм действия ферментов имеет свою специфику, например, включает образование комплекса «активный центр фермента – реагент» по типу «замок – ключ».

Заключение
Характер любой системы, как известно, зависит не только от ее строения и состава ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходится заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ.

В данном реферате доказаны следующие задачи:

– дано понятие вещества и химических систем;

– дано понятие и рассмотрена классификация химических реакций;

– проанализировано изучение структуры веществ в рамках химической системы.


Список использованной литературы
1. Азимов А. Путеводитель по науке. Пер с англ. – М.: Цетрполитграф, 2004.

2. Библиотека журнала «наука и жизнь», 1997–2004 (электронное издание). – М.: МедиаХауз, 2004.

3. Большая Российская энциклопедия: в 30 т. / Пред. Науч.-ред. совета Ю.С. Осипов. Т. «Россия». – М.: Бол. Рос. энциклопедия, 2004.

3. Естествознание: Энциклопедический словарь / Сост. В.Д. Шолле. – М.: Бол. Рос. энциклопедия, 2002.

4. Кондрашов А.П. Новейший справочник необходимых знаний. – М.: РИПОЛ классик, 2005.

5. Кузьмичев В.Е. Законы и формулы физики. – Киев: Наукова думка, 1989.

1 Дисперсность - характеристика размеров частиц данного вещества

2 Фаза – отдельная однородная часть гетерогенной системы.

3 Диэлектрическая проницаемость воды сравнительно высока (? = 81 при Т = 293К), в воде силы притяжения между разноименно заряженными ионами будут в 81 раз слабее, чем в вакууме.

4 Бинарные соединения образованы двумя элементами.
1   2

2. Химические реакции



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации