Численное исследование движения системы "газовая струя – жидкость"

скачать (20615.8 kb.)

  1   2   3   4   5   6   7
ДИПЛОМНАЯ РАБОТА

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДВИЖЕНИЯ СИСТЕМЫ

"ГАЗОВАЯ СТРУЯ - ЖИДКОСТЬ"
Содержание



Введение
Необходимость решения задачи о взаимодействии газовых струй с жидкими преградами возникла в конце 50-х годов прошлого столетия, в связи с интенсивным внедрением в металлургическую практику кислородно-конвертерного способа производства стали.

Технологически кислородно-конвертерный процесс представляет собой продувку железоуглеродистого расплава (чугуна) технически чистым кислородом, в результате которой происходит выгорание углевода и других примесей (сера, марганец, кремний, фосфор). В настоящее время отсутствуют фундаментальные работы по физико-математическому моделированию кислородно-конвертерного процесса в целом, что объясняется чрезвычайной сложностью гидродинамических и тепломассообменных процессов, протекающих в конвертерах. Очевидно, что создание физико-математических моделей кислородно-конвертерного процесса является очень трудной, хотя и важной задачей. Это обусловлено тем, что модель должна включать в себя три фундаментальные проблемы физической термодинамики - турбулентность, многофазность и воздействие физико-химических переходов.

В этой связи возникла проблема создания упрощенных физико-математических моделей кислородно-конвертерного процесса, и в первую очередь его гидродинамики, как основной части управляющего звена.

Настоящая дипломная работа посвящена численному исследованию силового взаимодействия газовой струи и несжимаемой жидкости через контактную поверхность, образующуюся при проникании струи в жидкость. Целью исследования является изучение влияния управляющих параметров процесса, а именно давления и температуры в газопроводе, а также высоты поднятия фурмы над уровнем невозмущенной жидкости на движение газа и жидкости как составляющих частей системы. Кроме того, исследовалось влияние управляющих параметров на величину площади межфазной поверхности.

В представленной математической модели отсутствуют эмпирические постоянные, а лишь используются известные закономерности механики жидкостей и газа. Расчет течения газа в фурме проведен по известным газодинамическим формулам для трубы переменного сечения (сопло Лаваля) [1, 2], параметры газовой струи рассчитывались с использованием [3], межфазная поверхность определялась на основании модифицированной теории проникания М.А. Лаврентьева [4, 5], а циркуляция жидкости исследовалась с помощью уравнений Навье - Стокса [6].


1. Общая постановка задачи и ее математические модели
Дается аналитический обзор основных работ по моделированию процессов, протекающих при взаимодействии газовых струй с жидкими преградами, показана общая схема силового взаимодействия и математические модели, описывающие его гидродинамику.

1.1 Обзор экспериментальных и теоретических работ по физико-математическому моделированию взаимодействия газовых струй с жидкостями



Основными работами, в которых обобщены и систематизированы экспериментальные данные по гидродинамическим и тепломассообменным процессам, протекающим при взаимодействии газовых струй с жидкими преградами, являются монографии В.И. Явойского [7] и В.И. Баптизманского [8].

Среди работ по исследованию гидродинамического взаимодействия газовых струй с жидкостями, обращает на себя внимание работа [9], в которой предложена модель взаимодействия струи с жидкостью, описываемая довольно простыми дифференциальными уравнениями. Однако эта модель требует знания большого количества экспериментальных данных, а замыкается основная система уравнений экспериментальной функцией уноса вещества, что затрудняет ее практическую реализацию. Кроме того, авторы не привели результаты, подтверждающие адекватность модели исследуемому процессу.

Определенный интерес представляет работа [10], в которой в рамках модели Рейнольдса для турбулентных течений жидкости получено поле скоростей в ванне конвертера. Оказалось, что при внедрении газовой струи в ограниченный объем жидкости в нем образуется тороидальный вихрь, причем вектор скорости на оси симметрии направлен вверх к свободной поверхности. К недостаткам модели следует отнести искусственность граничных условий и линейную зависимость скорости газовой фазы от координаты.

В работе [11] численно решена задача о движении жидкой стали в сталеразливочном ковше при ее продувке инертным газом. Слабым местом рассмотренной модели является отсутствие межфазной поверхности и пренебрежение влиянием сил тяжести.

Аналитически решена задача о силовом взаимодействии дозвуковой газовой струи с жидкостью в работе [12], в результате чего получена формула для площади контактной поверхности, расчеты по которой удовлетворительно совпадают с экспериментальными данными из [13]. Кроме того в работе получена формула, позволяющая находить предельно низкую высоту поднятия фурмы для достижения дозвуковой скорости струи на уровне поверхности спокойной жидкости.


  1   2   3   4   5   6   7



Рефераты Практические задания Лекции
Учебный контент

© ref.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации